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Abstract 

    The current literature is rather vague regarding how to calculate the exact numerical value of 

the resonant ion scattering cross section that should be used for a specific bandpass of finite width.  

Such a value was needed in order to calculate the ion density in the shock front of a close binary star 

system, based on a modeling of an ultraviolet wind-line profile, using IUE spectra.  Therefore, we 

have carried out a numerical integration, in wavelength-space, of the exact expression for the cross 

section over two bandpasses of interest.  The exact expression employed was that derived from a 

solution of the Abraham-Lorentz equation.  The numerical results depend on the resonant 

wavelength, which is taken to be at the center of the bandpass.  Most texts on the subject derive an 

expression for the scattering cross section in frequency-space, based on the assumption that the 

radiation reaction term in the Abraham-Lorentz equation may be approximated by a resistive term.  

The integral of this cross section over the entire spectrum is independent of the resonant frequency, 

except for the transition probability.  This has limited practical use when dealing with fluxes 

measured in a bandpass of finite width expressed in wavelength units and scattering is the only 

mechanism for producing the observed fluxes.  Such is the case when dealing with the low densities 

encountered in stellar winds and shock fronts.  Integrated cross sections that depend on the resonant 

wavelength are used to determine the number density of C IV ions in the shock front found in EM 

Car and the C IV and N V densities for the shock in HD159176.  These results indicate high 

ionization temperatures in these shocks, as expected. 

1. Introduction 

 This study was prompted by an undertaking of one of us, RJP, to model the UV light curves 

for IUE bandpasses encompassing a wind-line profile for hot eclipsing binary stars.  To accomplish 

this in part, it was necessary to calculate the amount of radiation that is scattered towards the 

observer, in a specified bandpass, by certain ions in a given volume element of a shock front formed 

by the colliding winds of the stars.  In so doing, one needed to determine the product of the ion 

density and the atomic scattering cross-section.  In turn, the number density of ions, such as C IV, in 

the shock could be found, if the atomic scattering cross-section were known. The problem then 

became to find the value of the scattering cross-section, σscat(Δλ) for the appropriate bandpass, Δλ.  

One would think that the theory of atomic scattering that is given in texts would be clear on this 

matter, but this is not the case.  Most authors develop the theory of atomic scattering in frequency 

space rather than wavelength space.  This is because angular frequency, , is a natural parameter that 

appears in the harmonic oscillator equation.  That is,   is related to the ratio of the elastic restoring 

force constant to the mass of the electron, more specifically, 2 
= k/me.  One purpose of this paper is 

to help clarify this matter when dealing with spectrophotometric data that employs wavelengths. The 



other is to compute the ion densities in the shock fronts that have been previously modeled for EM 

Carinae (Pfeiffer, R. J. and Stickland, D. J. 2004) and HD159176 (Pfeiffer et al. 1997).    

2.  Resonant Ion Scattering from a Static Shock 

  Let Fj(λ) be the unpolarized, monochromatic flux at wavelength λ, emanating from the jth 

element of surface area of the photosphere of a star and incident on an ion located in the shock front 

of an eclipsing binary star system.  The total monochromatic power scattered in all directions by that 

ion is (Stone, J. M. 1963, p. 343): 

           Pscat (λ) = σscat(λ)Fj( λ ).                                                             (1) 

An equivalent equation is (4-31) in Mihalas (1978). Actually, (1) defines σscat(λ), the atomic 

scattering cross section at wavelength λ.   Again, if one assumes that the incident beam is 

unpolarized, the power in bandpass    scattered by a volume element ΔVi with ion density n, into 

solid angle Δω through angle    is (See Fig. 1): 

         σscat(Δλ)     
 

   
                                                     (2) 

The factor in the square brackets is the normalized, angular 

distribution factor for scattering. The quantity Fij() is the flux 

emanating from the jth surface element of a stellar photosphere 

and incident on the ith volume element of the shock.  The 

volume element of the shock, ΔVi, is located at a distance     

from surface element j of a star, which has radius   .  Equation 

(2) is based on the development given by Stone (1963), who 

uses I (irradiance) for flux but otherwise presents a rather clear presentation of scattering theory not 

found in most sources.   If ΔA is the area of a detector at distance d from the volume element ΔVi, 

then Δω = ΔA/d
2
, and the flux falling on the detector is  

           ΔPi(  )/ΔA = σscat(  )     
 

   
                                        (3 ) 

To simplify the following discussion, let Si = σscat(Δλ)     
 

   
        

 
  .  Now let 

        be the flux emanating from a surface element of the star. Then 



                       
        

 , where  (    is an attenuation factor caused by the intervening 

wind envelopes.  Substituting the latter into (3) yields: 

          = Si   
            

  

  
  

     
 .                                                 (4)                                           

Now the total observed stellar flux from the system,                      
       is known 

from the IUE data.  Here, the quantity           is the flux emanating from the photosphere of a 

star in the bandpass     before it is attenuated by the wind envelope by an amount         

Therefore, the quantity Si                
  
    in (4) may be replaced by Si                , 

where    is the value of a partitioning function for a given surface element of the star.   Hence, (4) 

becomes 

                              
 

     
                                  (5)  

This essentially is the derivation of equation (3) in Pfeiffer et al. (2004), but with a slightly different 

notation and considering only one of the stars in the binary.  However, this derivation is not 

presented there.  Furthermore                  is the equivalent of the parameter Fijk  in equation 

(3) of the above reference, where k indexes a specific star in the binary.  

 The problem then becomes to properly partition the total observed bandpass flux among the 

different components of the system, which not only includes the photospheres of the stars but also 

the wind envelopes.  For the photospheres, Pj includes limb darkening, polar brightening (also called 

gravity darkening when referring to equatorial latitudes), and Lambert’s law. 

 To find the total observed bandpass flux scattered by the ions in the shock, one numerically 

integrates (5) over the volume of the shock, which is assumed to be static.  This integration is itself a 

very complex procedure, since    varies from one volume element to another.  In practice, this angle 

is found from the inner vector product of the position vector of the volume element relative to an 

element of area of a photosphere and the unit directional vector of the observer.  One must also 

determine  (    by taking into account the attenuation of the photospheric flux as it traverses the 

wind envelope before encountering the volume element in the shock and after it is scattered and 

traverses the wind or winds again in the direction of the observer.  To accomplish this, one needs to 

model the opacity in the wind as a function of path length.  In addition, one has to contend with two 



stars and develop the partitioning function for the observed flux.  However, these details are not our 

concern here but may be found in Pfeiffer and Stickland (2004).   Suffice to say that once the 

integration over the volume of the shock front is done, the resulting flux from the shock is added to 

the fluxes emanating from the photospheres and winds of the stars, taking into account eclipsing 

effects on all parts of the system.  The emission from the wind envelope of each star, in bandpass     

is calculated using a program, SEI, developed by Lamers et al. (1986), which was designed to model 

a wind-line profile.  This program has been previously adapted for use in binary systems by Pfeiffer 

et al. (1994).   The total modeled flux must then be in agreement with the light curve observed at a 

given Keplerian orbital phase.  The geometric parameters of the shock as well as all other 

parameters, such as σscat(Δλ)  in (5), are varied until such a fit is achieved.  When the scattered flux 

contributed by the shock to the total systemic flux is correctly modeled, the number density of the 

ions in the shock may be found, provided the value of σscat(Δλ) is known.  This is the matter we now 

address. 

3. The Integrated Scattering Cross-Section  

 The total or integrated scattering cross-section, σI, as presented in some texts, is obtained by 

integrating the scattering coefficient over all frequencies from zero to infinity, viz.,   

        
    

       
            

  
 

 

 
 ,                                   (6)                             

where      
    

   
    

 is the Thomson cross section, ω  = 2πν = 2πc/λ, e is the electrical charge on 

the electron, me is the mass of the electron,  c is the speed of light,   = 2e
2
ωo

2
/(3mec

3
) is the classical 

radiative decay constant, and ωo is the resonant frequency of an atomic transition.  The above 

expression is equation (14-15) in Stone (1963).   Similar expressions are equations (4-81) in Aller 

(1963), (17.63) in Jackson (1974), (4-34) in Mihalas (1978),  (6.71) in Padmanabhan (2000), and 

(3.62) in Rybicki and Lightman (1979).    Some authors use the symbol  instead of γ.  One would 

suppose that these authors all give the same expression, but this is not the case. The disagreement 

concerns the 2
nd

 term in the denominator of the integrand in (6).  The expression for this term 

depends on what assumptions are made in the solution of the Abraham-Lorentz equation.  Let us 

define this term to be u.  Following Jackson, and Rybicki and Lightman, we introduce the 

characteristic time, τ = 2e
2
/(3mec

3
), so that  or  = τωo

2
.    Then for Mihalas, u is       or u = 

τ
2
ωo

4      Rybicki and Lightman give u = τ
2
ωo

6
, which we suspect is a misprint, and should have 



been u = τ
2
ω

6
.  Stone gives     ω  ω 

  )
2
 or τ

2  , and Padmanabhan gives u = τ
2
ωo

4   in 

agreement with Mihalas.  Our interpretation of Jackson’s equation (17.63) is that it is in agreement 

with the expression given by Stone.  This solution is obtained by taking the resistive term in the 

Abraham-Lorentz equation to be zero and keeping the radiation reaction term.  That is, there is no 

energy loss by the harmonic oscillator to other effects (such as atomic collisions) other than quantum 

radiation (radiative scattering) and that one is dealing with a steady state solution.  Hence,  = 0 in 

t =  +  (Jackson, equation 17.61).  Stone and Rybicki and Lightman do not approximate the 

radiation reaction term by using a resistive term, but Aller, Mihalas, and Padmanabhan do.  This 

leads to the differences in the solutions among the above authors.  

 Of course, quantum mechanics introduces the oscillator strength or transition probability, f ij, 

so that 

                                                                                                                                                (7) 

For the following discussion, only the classical case shall be considered, since the final results need 

only to be multiplied by the transition probability. 

 The most transparent derivation of (6) is that given by Stone (Chapters 12 and 14) and the 

most rigorous by Jackson (Chapter 17).  Hence, (6) is the correct and most rigorous solution when 

one is dealing with measured fluxes that are the result of just scattering by an ion and not scattering 

plus absorption (total extinction, as defined by most authors).  Aller’s exposition on this matter 

which leads to his equation (4-81) is somewhat confusing.  On page 169, he states that the 

absorptivity,  ν, as given by equation (4-73) was derived from a consideration of light scattering.  In 

reality, the derivation of (4-73) was carried out on the basis of pure absorption using a resistive term 

in the equation of harmonic motion, (4-61), rather than a radiation reaction term.   

 The usual assumption made by some authors is that the profile of the scattering coefficient is 

so sharply peaked and the term u so very small, its exact value is not important.  The replacement of 

the radiation reaction term by only a resistive term appears to be done in order to achieve and 

expression for  that may be readily integrated.  As we show, this turns out to be numerically valid 

for adequately wide bandpasses.  Since the advent of high speed computers, it appears that no one 

has attempted a numerical integration of (6) for finite bandpasses. 



       However, even (6) is somewhat heuristic and perhaps misleading, for it is not the fundamental 

expression that defines the classical scattering cross-section, σscat.  The latter only has meaning 

through the expression (1).   The atomic cross section for scattering has no independent meaning 

outside of equation (1).  That is, Pscat(Δλ), or  Pscat(Δ), has a value that is specific for a particular 

bandpass and is to be found only by convolving the expression  

   ω      
  

       
            

  
                                         (8) 

with the flux F(ω) when integrating over the bandpass of interest.    In other words, when carrying 

out the integration indicated in (6), it is usually assumed that the radiation field is constant over all 

frequencies or wavelengths, which is never the case.  Aller (1953, page 166) is the only author who 

warns about this, saying that Fν should not vary appreciably with frequency near the resonant 

frequency.  Additionally, most authors assume that σ is such a sharply peaked function, the 

contribution to the integration over frequency is negligible except in the region immediately near the 

resonant wavelength or frequency, even when one integrates to infinity.  We decided to thoroughly 

investigate this assumption and find out how wide the bandpass must be for this to be true, using the 

exact expression, equation (8), for the cross section in the case of pure scattering. 

 Even if (6) is assumed valid, independent of F(ω), the integral has no analytical solution.  

Hence the need to use the alternative version of (6) that is derived using the resistive term in the 

Abraham-Lorentz equation in place of the radiation reaction term.  In addition, it is assumed that ω
 
≈ 

ωo, and ω
2
-ωo

2
 may be approximated by 2ω(ω-ωo) (Aller, p. 164;  Mihalas, p. 83; Padmanabhan, p. 

267; Rybicki and Lightman, p. 101).  With these simplifying assumptions, and transforming 

variables from  to ν, the integration leads to 

σI = 
   

   
                                                              (9) 

when integrating from 0 to +∞.  There is an additional factor of 2 when integrating using  as the 

variable of integration (Jackson, equation 17-73; Rybicki and Lightman, equation 3-65a).  It is 

interesting to note that (9) is independent of the resonant wavelength or frequency.  Jackson (page 

805) states that (9) is obtained by neglecting the radiation reaction term and this is equivalent to 

assuming the width t is independent of the frequency.   In other words, the decay time is assumed to 

be the same for all transitions.   This is clearly seen in the evaluation of the integral as given by Aller 

(1963,  p.166f).  This implies that it is the integration of (8) over an infinite bandpass, with the above 



assumptions to simplify the integral, that causes the loss of dependency of the cross section on the 

resonant frequency.  Our investigation, discussed below, has shown that this is not exactly correct. 

 Of course, (9) is of little use unless it is used in conjunction with a broadening function that 

introduces the resonant frequency when calculating line profiles.  The most straightforward 

exposition of this is given by Swihart (1963, p. 131f.) and also by Lamers et al. (1999, p. 198f.).   

However, as we show, for all practical bandpasses involving pure scattering, σ is dependent on the 

resonant wavelength λo, independently of a broadening function, but strangely enough, σ is 

independent of the resonant frequency.   

4.  The Bandpass Dependent Value of σscat 

    We decided to investigate how good the above simplifying assumptions to obtain (9) are by 

numerically integrating the exact expression, equation (6), for several bandpasses of astrophysical 

interest.  Additionally, this was done using wavelength units in centimeters instead of frequency.  

Therefore, to make a comparison, we needed to convert the usually quoted numerical value for σI, 

2.65 x 10
-2

 cm
2
-Hz, to units of cm

2
-cm.   Such a conversion may be computed from  

               σ  = σI  
  f /c,         (10) 

The latter is given by Aller (1963, p. 302), when using wavelength units for computing the 

equivalent widths of broadened lines.  Also see the discussion by Unsöld et al. (2001, p. 203f.) 

regarding line broadening.  It comes about by changing the variable of integration from dν to dλ, 

since (λ
2
/c) dν = |dλ| and λ is evaluated at λo.   We prove the validity of this below.  Values for the 

constants in (9), with precision to at least 7 places, were taken from Cox (2000).   So a more precise 

value for σI is 2.65376 x 10
-2

 cm
2
-Hz, with uncertainty in the last place.   Now, for one of the C IV 

resonant wavelengths taken from Striganov and Sventitskii (1968), equation (10) gives σI = 2.12172 

x 10
-22

 cm
2
-cm, (uncertainty in the last place) with f taken to be unity.  We shall compare the results 

from our numerical integration with this value.  

 Converting (8) to wavelength units and then integrating over a finite bandpass centered on the 

resonant wavelength we get: 

         
  

    
  

  
  

    
 

  

  

  
                             (11) 



In (11), η is the constant 4       16π
2
e

4
/9me

2
c

4
, which has the value 1.39303 x 10

-24
 cm

2
.    

Notice that the denominator in (11) is dimensionless and that the dimension of the integral is just cm, 

whereas the constant outside the integral (the Thompson cross-section) has units of cm
2
.  Again, 

values for the constants were taken from Cox (2000).   

 Values for     were calculated by writing a FORTRAN program that numerical integrates 

(11) by the method of quadrature with unit weights on a SunBlade 150 work station.  In order to 

avoid inconsistent results, σ must be evaluated at λo and multiplied by dλ in one of the steps.  This 

was accomplished by starting the integration at λo and then integrating from there to shorter and 

longer wavelengths separately, since the function is not symmetrical about λo. Numerical values for 

the step in the integration,  dλ, were used ranging from 1 x 10
-8

 cm to 1 x 10
-16 

cm.  It was found that 

the integral converges to essential the same number, significant to 6 places, after dλ is reduced to 1.0 

x 10
-13 

cm.  However, the value for     increases slightly with increasing bandwidth.  The results for 

one of the resonant wavelengths for C IV, λo = 1548.185Å (Striganov et al., 1968) are listed in Table 

1.  Again, uncertainty there is in the last decimal place.  The last entry in Table 1 is the result using 

equation (10).   

      Table 1 

Values of the integrated scattering cross-section centered on the 

resonant wavelength 1548.185Å for the C IV ion for several different 

bandpasses.  The transitional probability is set equal to 1.0 

              Δλ(Å)                     Bandpass (Å)               σ(cm
2
-cm) 

              0.1             1548.135 – 1548.235            2.12012e-22 

              0.5             1547.935 – 1548.435            2.12140e-22 

              1.0             1547.685 – 1548.685            2.12156e-22 

              1.2             1547.558 – 1548.785            2.12158e-22 

              2.0             1547.185 – 1549.185            2.12164e-22 

              4.0             1546.185 – 1550.185            2.12168e-22 

            10.0             1543.185 – 1553.185            2.12170e-22 

            20.0             1538.185 – 1558.185            2.12171e-22 

            35.0             1530.685 – 1566.685            2.12171e-22 

         100.0             1498.185 -  1598.185            2.12172e-22 

                    σI  
  /c =            2.12172e-22 

 

Notice how the results converge to the value given by (10) as the bandwidth increases.   These values 

differ from the value obtained from equation (10) in the 3
rd

 decimal place for the smallest bandpass 

and in the 4
th

 place for bandpasses less than 4 Å in total width.  Therefore, the simplifying 

assumptions that the radiation reaction term in the Abraham-Lorentz equation may be approximated 



by a resistive term and that ω
2 

- ωo
2
 ≈ 2ω(ω-ωo) are very good ones and testify to how sharply peaked 

the profile of the scattering coefficient is.  That is, the function for the scattering coefficient is 

essentially a delta-function.  So, when working with wavelength units in cm, one may use (10) for all 

practical bandpasses, but certainly not (9).  Of course this depends on the precision with which one is 

working.  Integration over bandpasses up to 500 Å wide were also carried out with no change in the 

result.  The 35 Å-wide bandpass was the one used for the light curve analyzed by Pfeiffer et al. 

(2004).  Actually this bandpass contains a doublet consisting of the above line separated from the 

other by about 2.6Å.   

       Table 2 presents similar results carried out for a visible bandpass, viz., for the Na I line at 

5889.9504 Å with f =1.0.  Clearly, the value for the integrated cross section depends on the resonant 

wavelength, when no simplifying assumptions are made in the solution of the Abraham-Lorentz 

equation or in the integration process and without introducing a broadening function. 

Table 2 

Values of the integrated scattering cross-section centered on the 

resonant wavelength 5889.9504 Å for Na I, for several different 

bandpasses and f = 1.0 

              Δλ(Å)                 Bandpass (Å)              σ(cm
2
-cm) 

              0.1       5889.9004 – 5890.0504            3.06916e-21 

              0.5       5889.7004 – 5890.2004            3.07044e-21 

              1.0       5889.4504 – 5890.4504            3.07067e-21 

              1.2       5889.3504 – 5890.5504            3.07071e-21 

              2.0       5888.9504 – 5890.9504            3.07078e-21 

              4.0       5887.9504 – 5891.9504            3.07084e-21 

            10.0       5884.9504 – 5894.9504            3.07087e-21 

            20.0       5879.9504 – 5899.9504            3.07089e-21 

            35.0       5872.4504 – 5907.4504            3.07089e-21 

                 σI  
  /c =            3.07090e-21 

               

 The result for a 25 Å wide bandpass for one of the components of the N V doublet at 

1238.821Å is 1.35850e-22 cm
2
-cm, which, again, is in numerical agreement with the value computed 

from equation (10).  The latter bandpass will be used for the calculation of the N V density in the 

shock front of HD159176, which is presented below.  

 We have also numerically integrated (8) without any simplifying assumptions, such as  is the 

same for all transitions.  We have carried out the integration for various values of o and various 



bandwidths.  Indeed, the results are independent of o, to seven significant figures, when d is 10
7
 

Hz. or smaller. 

 Graphs of σ versus ω are presented by Jackson (1974, pg. 803), Rybicki and Lightman (1979, 

pg. 10) and Stone (1963, pg. 347) with relative scales.  But these figures really do not convey how 

sharply peaked the function is, though Stone (1963, p. 347) attempts to quantify this.  Table 3 gives 

computed values of σ for various wavelengths centered on the C IV resonant wavelength at 1548.185 

Å, demonstrating this.  Even a logarithmic scale on a graph would have difficulty showing this, since 

there are 8 orders of magnitude variation of σ over just 0.5 Å.  

Table 3 

      Computed values for the scattering cross-section at several different wavelengths  

in the vicinity of the resonant wavelength of 1548.185 for Carbon IV 

                                     

 

 

  

 We also attempted to see if Mathematica could find an analytical solution to (11).  It could 

not.  However,  Mathematica did find an analytical solution when the u term in the scattering profile 

is that given by Mihalas and Padmanabhan, without making the simplifying assumption that ω
2
-ωo

2
 

may be approximated by 2ω(ω-ωo)  The result is: 

         
    

 
 

 
        

       

            
 

              

 
 
 

 
 

      
   

 

        
       

            
 

              
 
 

 

      
,                  (12) 

where      
      

  and x = λ/ o.   The terms in the large curly brackets are the evaluation of the 

integral at the upper (xf) and lower limits (xi) of the integration.  This solution yields numerical 

results in total agreement with the numerical integration of (11) to 6 significant figures?   Again, this 

indicates that the exact express for u in the denominator of the scattering profile is not significant, 

except when working with very narrow lines. 

λ(Å) σ(cm
2
) 

1547.685 1.59474e-18 

1548.145 2.49103e-16 

1548.155 4.42846e-16 

1548.165 9.96392e-16 

1548.175 3.98544e-15 

λo=1548.185 1.14442e-10 



Ion densities in Modeled Shocks 

        In addition to the determination of a numerical value for n(Δλ)f through its use as an input 

parameter in the numerical integration of (5), it must also satisfy the relationship that involves the 

optical depth of the shock.  That is, when computing the attenuation or eclipsing effects of the shock 

on the integrated fluxes, within the bandpass Δλ, emanating from the photospheres and winds of 

either star in the binary,  one uses:  

                                                                   (13)  

Here      is the usual broadening function.  The number density of the ions is assumed to be 

constant over the thickness of the shock, t.   Additionally, the correction for stimulated emission is 

assumed to be about 1, since shock densities are sufficiently low that most of the ions may be 

assumed to be in the ground state.  Anyway, it is not possible to calculate what this factor should be.  

Since we are not interested in the details of a line profile, the broadening function may be replaced 

by simply dividing the result of the integration by the Doppler broadened width of the bandpass.  

This is necessary in order that the optical depth be dimensionless.  Hence, (13) becomes: 

                                                                          (14) 

That is, one uses the mean value of the optical depth for the bandpass.   

 Hence, there are two constraints on the determination of the parameter n    f.  The nominal 

value for t was 2R


 for the shock modeled for the EM Car system (Pfeiffer et al., 2004).   Actually, 

the cross section in (5) and (14) is the weighted, combined cross section for scattering by the shock 

in the bandpass of a doublet, each component of which has essentially the same value for , but 

different oscillator strengths. The latter were taken from Cox (2000).  The value of     for each 

member of the doublet is numerically the value taken from Table 1 for the appropriate bandpass or 

computed from (10).     The total width of the bandpass was determined to be the result of Doppler 

broadening by turbulence in the shock (Pfeiffer et al., 2004).   

 It is now realized that the value of      Δλ used for calculating the ion density by Pfeiffer et 

al. (2004) was too small.  For that paper, the value used for         was 2.22 x 10
-16

 cm
2
 for a 35 Å 

wide bandpass, whereas the value should have been 4.83 x 10
-16

 cm
2
.    Hence, the published value 

for the C IV number density of 1560 cm
-3

 is too large by a factor of about 2.    The corrected value of 

the number density was then used to calculate the total mass density in the shock from  



      
   

  
      

    

  
       

  

  
                                                (13) 

As a first approximation, we have assumed that all the carbon in the shock is entirely carbon IV.  

Values for the abundance ratios relative to hydrogen were taken from Cox (2000) to be 0.090 for 

helium and 3.63 x 10
-4

 for carbon.  For the other metals, which are partially ionized to some 

unknown degree, we have taken a weighted mean value for Az to be 9.00 and 
  

  
       .  The 

exact values are not significant, since nz/nH is so small.  Now, since only nCIV is known and not nH, 

we may replace nH outside the parentheses in (13) with (nCIV/3.63 x 10
-4

).  This yields a mass density 

in the shock that is on the order of 10
-18

 g/cm
3
.  The shock in EM Car is located at a distance less 

than one stellar radius from both the primary and secondary stars.  Typical wind densities in hot stars 

at photospheric distances of r/     are about 10
-13

 g/cm
3
 (Lamers et al, p. 251).  For close binaries, 

shocks are generally radiatively cooled.  In such cases, there may be a factor of 10 to 100 increase in 

density from the pre-shock wind (Owocki, 2009).    Furthermore, the densities found for the shocks 

in W-O-type binaries have been modeled by Gayley et al. (1996) to be on the order of 10
-12

 g/cm
3
 or 

higher.  Hence, one would expect the shock density in EM Car to be at least 10
-12

 g/cm
3
.   This 

means that the assumption that all the carbon is in the form of C IV is grossly wrong.  Using the 

value 1 x 10
-12

 g/cm
3
 for the density in (13) and solving for nH, yields a value of 2.11 x 10

12
 cm

-3
, 

which leads to nC = 8.39 x 10
8
 cm

-3
!  Therefore, most of the carbon in the shock is probably in the 

form of C V or higher states of ionization rather than C III.  This is because there are no ostensible C 

III wind-lines noticeable in the IUE spectra, such as the doublet near 1428Å or the sextuplet at 1175 

Å.  This implies a very high temperature for the shock as is expected, since EM Car is a known X-

ray source (Corcoran, 1996). 

 In the case of HD 159176, Pfeiffer et al. (1997) obtained an optical depth equal to 0.93 for 

the C IV in a modeled shock with nominal thickness 2R


.  The result for the C IV density in the 

shock as reported in that paper (n=0.13 cm
-3

) is also incorrect because of an incorrect value used for 

     Δλ, namely 8.0 x 10
-11

 cm
2
. The correct value for this parameter, as given above, leads to a C 

IV number density equal to 1.48 x 10
4
.    For the N V doublet, the above authors obtained an optical 

depth of 1.01, which leads to an ion number density of 2.85 x 10
4
 cm

-3
.  Now the stellar components 

in HD 159176 are hotter than those in EM Car.  So, in light of the previous discussion for the shock 

density in EM Car, it may be concluded that the total mass density in the shock of HD 159176 is 

greater than the shock in EM Car.   A comparison of the C IV densities of the two systems would not 

yield an estimate of the density ratio of the shocks in these systems, since the ionization temperatures 

are not well determined.   



 A preliminary investigation of the IUE spectra for the contact binary TU Miscue has found 

no evidence of a shock in this system.  This is probably the result of the contact configuration of the 

binary.   That is, radiation breaking (Gayle et al., 1996) and the close proximity of the stars does not 

permit the winds to accelerate to sufficient speeds in the vicinity of the stars, where the wind density 

is sufficiently high, that an interaction of the winds would produce a detectable enhancement in the 

density. 

 Conclusions 

 The atomic resonant scattering profile is so sharply peaked, that the approximations made in 

most texts for the solution of the Abraham-Lorentz equation are very good ones to 5 significant 

figures, when integrating the cross section over bandpasses greater than 2Å in width.   For 

bandpasses narrower than 2 Å, down to 0.50Å, the assumptions leading to (10) are even good to 4 

significant figures.  One certainly does not want to use the value given by (9) for the cross section for 

all bandpasses, since the integrated value of σI is definitely dependent on the resonant wavelength, 

independently of a broadening function.   Oddly though, we found that σI is independent of the 

resonant frequency o for transitions ranging from the ultraviolet to the near infrared. However, 

these matters are not presented uniformly in most textbooks. 

 The C IV densities found for the shock fronts in EM Car and HD159176 independently 

indicate very high ionization temperatures in both systems and a much higher density in the shock of 

HD 1591756 than in EM Car. 
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