
 
CHAPTER 7A&B 

 
7-1. The White Dwarf Stars: 

 
 The first indication that white dwarf stars existed came with the visual verification of a 
companion of the star Sirius in 1862, though Bessel had discovered there was a companion years 
earlier  from an analysis of the proper motion of Sirius.   From an analysis of the orbital dynamics of 
the pair, it was found that Sirius B has a mass equal to 1.05M


 and the spectrum indicated that its 

surface temperature was about 28,000K.  However, the observed luminosity of the star was 0.03L


.  
From the Stefan-Boltzmann Law one derives a radius of 5.5 x 10

8
 cm which is about 0.008R


.  This 

meant that 1.05 solar masses were compacted into an object the size of the Earth. In turn, this leads to 
a mean density for the star of 3.0 x 10

6
 g/cm

3
, which, at that time, was viewed as quite extraordinary.  

We now estimate what the pressure is at the center of the star using the hydrostatic equilibrium 
equation . 
 
               dP/dr = -GM/r

2
 = -G(4/3r

3
)/r

2
 = -4/3G

2
r                                        (6-30) 

 
We integrate this from the surface where P=0 and r=R to the center of the star where r=0, assuming 
the density is constant. 
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Take the surface Pressure to be 0 and we have 

 

    Pc = 2/3G
2
R

2 
 ≈ 3.5 x 10

23
 dynes/cm

2
.    

             

 

This is a fantastic pressure.  We can now estimate the central temperature from the equation of state: 

 

    Tc = PcmH/k = 7 x10
8
 K.         (5-69)

  

More exact models with better density functions yield core temperatures of about 7 x 10
7
 K.  At this 

temperature, any TNF reactions would produce a luminosity far higher than that observed.  Hence, 

we conclude there are no nuclei in the core of the star that may undergo fusion.  We now realize that 

such stars consist mainly of carbon and oxygen nuclei with shallow upper layers of H and He.   

 
Characteristics of white dwarfs: 

 
 1.  Mass is less than the Chandrasekhar Limit of about 1.4M


, but this depends on the molecular 

 weight.  
 

 2.  Degenerate electron pressure balances gravity. 
 
3.  The star has its minimum radius and can not contract any farther.  Sizes range 6000 Km 

(0.01R


 or 1 Earth radius) to 150,000 Km. 



 
4.  Typical density is 10

6
 g/cm

3
. 

 
5.  Surface temperatures range from 50,000K to 5,000K. 
 
6.  There is no internal source of energy and the star is slowly cooling along a line of constant 

radius in the H-R Diagram to become a black dwarf, but this will take about 50 billion 
years.  It will take 10 billion years just to cool to 3000K. 

 
7. The atomic nuclei are constrained in place forming a crystal lattice often referred to as a 

quantum solid. 
 

 In a completely ionized gas, the electrons exert a separate pressure from that of the nuclei.  The 
electrons are fermions and obey the Pauli Exclusion Principle.  As the temperature of a gas decreases, 
fermions will occupy the lowest energy levels first and then successively occupy the higher energy 
states that are available.  As T approaches zero, the motions of the 
electrons in the excited states produce the electron pressure.  At 
T=0, all of the lower energy states and none of the higher states are 
occupied.  Such a fermion gas is said to be completely degenerate 
and the energy dividing the occupied states from the vacant states is 
called the Fermi Energy, F.  The latter may be found from quantum 
statistical theory as follows (or see Sears and Salinger, pp. 407-
410): 
 Electrons or fermions may be represented as de Broglie 
standing waves in a volume of dimension L.  L is really the mean 
separation of the fermions in the gas.  The volume is actually the 
potential well in which the fermion finds itself as a result of the 
repulsive coulombic forces of the other fermions. We choose 
rectangular coordinates to simplify matters.  Then take the volume 
to be a cube.  The wavelength of the electrons is λi = 2L/Ni for each of the three sides of the cube.  
The Ni are integer quantum numbers associated with each dimension, i = x, y, or z.  So when Ni = 1, 
we have the maximum standing wave length of 2L along either the x, y, or z directions.  The de 
Broglie wavelength is related to the momentum of the electron by the relation 
 
   pi = hNi/2L           (6-32) 
 
and the total kinetic energy of the particle is ε = p

2
/2me, where p is the total momentum 

 

            
  

     
 
Hence, the kinetic energy of a fermion is: 
 

                           
  

     
     

      
    

     
        (6-33) 

 

The total number of electrons in an electron gas is Ne is equal to the total number of sets of unique 

quantum numbers, Nx, Ny, Nz times 2.  The factor of 2 comes about because 2 electrons can have the 

same set of quantum numbers if they have opposite spins, which means there are really four quantum 

numbers, one for the spin.  Now N may be thought of as the radius of quantum number space and so 

the volume of this space is (4/3)N
3
, and Nx, Nx, and Nz are the coordinates of each electron in this 



space.  But the quantum numbers cannot be negative, so the electrons only occupy an octant of this 

quantum space which has volume (1/8) (4/3)N
3
.  So the number of electrons that can occupy this 

space is twice this because of the spins.  Hence, 

 

          
 

 
            

 

Now solve this equation for N and we get     
   

 
 
   

.  Substitute this into (6-33) and simplifying 

with        and ne = Ne/L3 we get: 
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The Fermi energy is the maximum energy that any 
electron can have at T = 0.  As the temperature rises above 
0, some fermions will occupy states with energies greater 
than the Fermi energy.  The gas is then partly degenerate.  
This is illustrated in the accompanying diagram.  
However, when n is very large, such as in a white dwarf, 
degeneracy is a good approximation.  That is, all but the 
most energetic fermions will have energies less than the 
Fermi energy.   
 So, in white dwarfs, electrons are as densely packed 
as permitted by the Pauli Exclusion Principle.  Under this 
condition, the electrons act as if they are in one enormous 
atom. Since the electrons occupy their lowest energy levels, they can not undergo transitions to 
produce photons or radiate electromagnetic waves.   Hence, the white dwarf is effectively very cold 
in spite of the high internal energy it holds. 
 Now we want to express the Fermi energy in terms of the temperature and density.  Start with 
 
  ne = (# electrons/nucleon)(# nucleons/volume) = (Z/A)(/mH). 
 
So:    F = ( 2

/2me)[3
2
(Z/A)/mH]

2/3
.            (6-35) 

 

This is the maximum energy of electrons at T=0.  Now the thermal energy of the electrons is (3/2)kT.  
If this is < F, the electrons cannot undergo a transition to an unoccupied state and the gas is 
degenerate.  Hence, we have the condition for degeneracy that (3/2)kT < F or 
  
   T/2/3 < ( 2

/3kme)[3
2
Z/AmH]

2/3
              (6-36) 

 

On the average, Z= (1/2)A, so Z/A= 1/2.  Then the above becomes: 
 
  T/2/3 < ( 2

/3kme)[3
2
/2mH]

2/3
 = 1.3 x 10

5
 K cm

2
 g2/3

 

 

Let us refer to this quantity as DC, the degeneracy criterion.  That is  
 
        T/2/3 < DC = 1.3 x 10

5
 K cm

2
 g2/3

                    (6-37)



     
The smaller the value of T/2/3

, the greater the degeneracy of the gas.   
 Let us calculate the value of T/2/3  for the core of the Sun, where T is 15 x 10

6
 K and c = 162 

g/cm
3
.  This gives a value of 5.3 x 10

5
, which is > DC.  So degeneracy plays a small role in the core 

of the Sun.  Degenerate electron pressure contributes only a few tenths of a percent of the central 
pressure in the Sun. As the Sun evolves, the core contracts and the density increases faster than T, 
because of radiative losses and the degeneracy will become more significant.  
 If we use the values of T and  in the core of Sirius B, we get a value smaller than DC.  Hence, 
in the interior of Sirius B, degenerate electron pressure dominates and supports the star from further 
gravitational contraction.  
  
 It was S. Chandrasekhar, between 1931 and 1932, who worked out the theory of white dwarfs.  
He found that, as a consequence of special relativity, the rate of change of pressure with density 
would decrease at very high densities.  See the diagram below, where the slope of the curve is 
decreasing with increasing density. This meant that a maximum stable mass existed for stars that 

have exhausted their internal energy sources.  In 1932, Landau showed that more matter than the 
critical value would lead to a collapse of the star without limit. 
 When a star exhausts most of its nuclear fuel, the star is expected to be composed either of 
nuclei embedded in a gas of electrons ( a white dwarf with densities in the range of 10

5
 to 10

8
 g/cm

3
) 

or a gas of neutrons in equilibrium.  The latter would be a neutron star with densities in the range of 
10

14
 to 10

16
 g/cm

3
.  In both cases, the material is a degenerate Fermi gas held together by gravity. 

The pressure required to balance gravity results from the zero-point energy, allowing for the Pauli 
Exclusion Principle rather than from the kinetic energy of an ideal gas.  In this sense, the gas is acting 
like a solid though it is not a solid. 
 In a white dwarf, the main contribution to pressures comes from the gas of degenerate electrons 
whereas the nuclei contribute mainly to the density. In a neutron star, both pressure and density are 
generated by the gas of neutrons and there are no electrons. 
 Consider a cold star composed of particles of mass m and number density n.  The particles 
comprising the gas are Fermions with spin ½, such as electrons, protons, neutrons, and mu-mesons.  
By the Pauli Exclusion Principle, each particle occupies a volume 1/n.  From the Heisenberg 
uncertainty principle: 
 
     xp  ≈  h/2.          (6-38) 
 
Here p is momentum.  So for each particle we have that x

3
 = 1/ne, and hence,  

 
     px ≈  hn

1/3
/2≈ px.           (6-39) 

 



If the gas is non-relativistic, vx << c, then the velocity of a particle is  
 
     vx ≈ px/m = hn

1/3
/2me            (6-40)

 
Now the pressure, as for a simple gas, is the time rate of change momentum per unit area, which may 

be expressed as: 

 

    P = pvn = hn
1/3

/2 hn
1/3

/2me)n = (h/2)
2
n

5/3
/me          (6-41) 

 

The mass here is appropriately the electron mass rather than the mass of the nuclei.  This is because 

the electrons have much larger velocities and will therefore dominate the pressure.  For a relativistic 

gas, ve ≈  c.  Then 

 

      P ≈  n
1/3

cn = c n
4/3               

(6-42) 

 

We shall now derive the mass limit for a white dwarf.  Gravity is Fg = GMm/R
2
.  Now consider a 

unit volume of the star where m = nmn, where mn is the average mass of  the nuclei.  For hydrostatic 

equilibrium, gravity must be balanced by the pressure gradient (see Chapter 5) 

 

      P/R = GMnmn/R
2
,           (6-43) 

or 

 

      P = GMnmn/R            (6-44)

  

 

Now M=V = nmnV = nmnR
3
.  Solving for R we have R = [M/nmn]

1/3.  Substitute this for R in the 

above and we get 

 

     P = GM2/3
(nmn)

4/3
              (6-45) 

 

In the non-relativistic regime, equilibrium is achieved when (6-45) equals (6-41), or  

 

    GM2/3
(nmn)

4/3 = 2
 n

5/3
/me             (6-46) 

 

Now solve for M in (6-47): 

 

        M = G
3/23

 n
1/2

 me
-3/2

 mn
-2

                           (6-47) 

 

In such a case, for any specified n, a value of M can always be found. 

 

Relativistic Case: 
    For v c, equate the left side of (6-46) with (6-42): 

 

     GM2/3
(nmn)

4/3 
=

 c n
4/3     

        (6-48) 

 

Here n cancels.  Solving for M we get: 

 



      M = (c/G)3/2(mn)
-2

            (6-49) 

Or  

      M = 6.65M



-2
  1.44M


                                      (6-50) 

 

This is the Chandrasekhar limit.    Note that M is independent of n.  This means that the same mass is 

obtained independent of the radius.  Stars more massive than this cannot be supported by electron 

degeneracy pressure, no matter how small the star. 

 

7-2. Neutron Stars  
 Stars with masses between the 

Chandrasekhar limit and about 3M


 

gravitationally collapse to the point where all 

the electrons are forced to combine with the 

protons to form neutrons.  Eventually 

degenerate neutron pressure is able to halt 

further contraction.  A 1.45M


 neutron star 

would consist of 1.45M


/mn  10
57

 neutrons.  

It is in effect a huge atomic nucleus that is held 

together by gravity and supported by 

degenerate neutron pressure and has an atomic 

weight of 10
57

.  The typical radius of a neutron 

star is 10km with a density of 2.3 x 10
14

 g/cm
3
.  

The acceleration of gravity at the surface of 

such an object would be 190 billion times 

greater than the acceleration of gravity at the 

Earth’s surface.  Upon collapsing, the 

conservation of angular momentum demands 

the star rotate with a period of a few 

milliseconds.  Also, any imbedded magnetic field would be intensified upon collapse to about 10
8
 

Tesla.  If the magnetic axis is tilted with respect to the rotational axis, the pulsar phenomenon is 

observed. 

 

  

7-3.  Black Holes  

 
 If the final core of a star exceeds 3M


, it will gravitationally collapse to the point where 

degenerate neutron pressure cannot balance gravity.  In fact, there is no known force that can halt the 

collapse of the star to a singularity. As the core contracts, the surface gravity becomes so strong that 

that the escape velocity exceeds the velocity of light.  Hence, no electromagnetic radiation can leave 

the object and it becomes black.  From the general relativistic view, the object has curved the space-

time continuum around itself to such a degree it is like a hole in space.  Hence the term “black hole,” 

which was coined by John Wheeler.  The size of the star when it has contracted to the point where the 

escape velocity is equal to the velocity of light is called the “critical radius” or “Schwarzschild 

radius.”  This is given by  

 

       Rc = 2GM/c
2
            (6-51) 

 



 Every body has a critical radius, even you.  For the Sun, Rc  3 km.  Once a body has collapsed 

inside of its critical radius, the collapse is not reversible nor can it be halted.  In addition,  no energy 

can escape from it. 

 At 1.5Rg, photons traveling tangential to the radius would be bent into an orbit around the star. 

They would be caught in a spherical cloud from which they slowly leak forever. Photons leaving at 

other angles can escape. At Rg, only photons traveling vertically can escape.  They would have to do 

work against gravity and are therefore greatly red shifted, where ΔE=hΔν. 

 

General Relativity 

 In general relativity, the laws of physics are the geometry of the space-time continuum.  The 

space-time continuum is elastic and is deformed by the presence of matter.  Matter is thought to give 

the S-T continuum curvature.  A line element in a 3 dimensional manifold may be written as: 

  

ds
2
 = dx

2
+dy

2
+dz

2
. 

In spherically symmetric space:   

 

ds
2
 = dr

2
 +r

2
dθ

2
 +r

2
sin

2
θdφ

2
. 

 

As r approaches infinity, the space becomes flat. 

 We now introduce time: 

 

ds
2
= A(r)dt

2
 - B(r) dr

2
 - C(r)r

2
dθ

2
 – D(r)r

2
sin

2
θdφ

2
. 

 

The functions A, B, C, and D define the curvature of the manifold or space.  They are found by 

solving the Einstein field equations, which is very difficult to do.  In 1916,  two months after Einstein 

published his general theory of relativity, the German astronomer Karl Schwarzschild found a 

solution by assuming there is no angular momentum in the system and no magnetic field.  The results 

are: 

 

A = (1-2GM/c
2
r)  B = (1-2GM/c

2
r)

-1
 

           C = 1          D = 1 

 

This is known as the Schwarzschild metric.  M is the total mass in the system including mass-

energy in the field.  Only then is the inertial mass equal to the gravitational mass.   The 

Schwarzschild metric is the spherically symmetric vacuum solution of Einstein’s field equations.  

That is, it is only valid in the empty space outside the body. 

 Now consider what happens when r = 2G/Mc
2
.  Then  

  ds
2
= (1-2G/Mc

2
 /2G/Mc

2
)dt

2
 – (1-2G/Mc

2
 /2G/Mc

2
)
-1

 dr
2
 - r

2
dθ

2
 –r

2
sin

2
θdφ

2
 

  ds
2
= (1- 1)dt

2
 – (1-1)

-1
 dr

2
 - r

2
dθ

2
 –r

2
sin

2
θdφ

2 

    ds
2
=  0 dt

2
 – dr

2
/0 - r

2
dθ

2
 –r

2
sin

2
θdφ

2
 

Hence, this value of r results in a singularity and is known as the critical or Schwarzschild radius, rc=  

2G/Mc
2
.  The coefficient of dt

2
 goes to zero, which means that O would see O’s clock appear to run 

infinitely slowly.  A message emitted at some time, to, would not arrive at a larger value r until an 

infinite time later.  In fact, signals emitted at r < rc never come out of this region of S-T.  A massive 



body completely enclosed within rc could not radiate out into the rest of the universe and would be 

appear to be invisible.  For r < rc, the sign on the r term reverses.  The critical radius corresponds to a 

surface of infinite red shift.   Black holes are detectable through the gravitational and electromagnetic 

fields they would set up, but not by radiation they emit. 

 

Derivation of Schwarzschild Metric 

 

 Consider two inertial frames, O’ and O, both of which are freely falling, in a centrally symmetric 

gravitational potential .  An observer in O’ is at distance r from the central mass distribution, M, 

and has just started to accelerate radially towards M but has velocity is zero.  Since O’ is freely 

falling, his differential line element in four-space is: 

  

ds
2
 = c

2
dt’

2
 –r’

2
(sin

2
’ d’

2
 + d’

2
) –dr’

2
. 

 

This is nothing more than the Pythagorean expression for the differential separation of two points or 

events in a four-dimensional flat space expressed in spherical coordinates.  

 Now consider another observer in frame O that is at a sufficiently large distance r from M so 

that his potential is nearly zero but has escape velocity.  Hence, 1/2V
2
 =  at all times.  When O 

passes O’ at distance r, he is coasting at velocity V relative to O’. Since both observers are in inertial 

frames, we may use the Lorentz transformation equations to deduce what O’s line element would be 

as seen by O.  Hence, 

 

     dt =dt’/(1- v
2
/c

2
)
1/2

  and dr = dr’(1- v
2
/c

2
)
1/2

 

 

But v
2
 = V

2
 = 2, so 

 

     dt =dt’/(1- 2/c
2
)
1/2

  and dr = dr’(1- 2/c
2
)
1/2

 

 

Now we may write 

 

     ds
2
 = c

2
dt

2
(1- 2/c

2
) –r

2
(sin

2
 d

2
 + d

2
) –dr

2
/(1- 2/c

2
).  

 

Here r’
2
(sin

2
’ d’

2
 + d’

2
) = r

2
(sin

2
 d

2
 + d

2
), since there is no motion except along r and hence 

no angular momentum.   This represents a translation of the clock rate and scale length in O’s frame 

as observed by O.   For the gravitational field of M,  = GM/r. Therefore: 

 

                ds
2
 = c

2
 (1- 2GM/rc

2
)dt

2
 – r

2
(sin

2
 d

2
 + d

2
) – dr

2
/(1- 2GM/rc

2
). 

 

Such a line element is called a Schwarzschild metric.  Now when rs = 2MG/c
2
, we note that 

something odd takes place.  This is the Schwarzschild radius.   
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