CHAPTER5
Stellar Interiors

5-1. Hydrostatic Equilibrium

Hydrostatic equilibrium is a state or condition where, at every point in a star, gas pressure
pushing outwards is balanced by gravity pulling inwards. Hence, the star is neither expanding nor
contracting. We shall now develop the equations that express this balance. See the schematic
below and consider an arbitrarily located, spherically symmetric layer or shell of thickness dr
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5-2.  The Equation of State
For most stars, we can assume the ideal gas law is valid, viz.,
P(r) = n(nkT(r) (5-6)
Here n(r) is the total number density of all atoms. If u(r) is the molecular weight, then
n(r) = p(r)/pu(r)my, (5-7)

Then P(r) = p(NKT(N/u(r)m, (5-8)



5-3. Molecular Weight
We now address the meaning of molecular weight in stars:

Stars are comprised of a mixture of a various ions and electrons, each with a mass m;. Each
particle has an abundance by weight a;, which is dimensionless and less than 1. The mass density of
a species is p;, and the number density n;. Then p; = min; = aijp, where p is the total mass density of
the gas.

We now define the mean molecular weight of the gas as

p = <m>/m, (5-9)
Here <m> is mean or average mass of a gas particle. In general, u = pu(r), but we shall drop this
radial dependence in our further notation. The mean molecular weight is the average mass of a gas
particle in units of the mass of the hydrogen atom or proton. The value of p depends on the
chemical composition of the gas and the state of ionization of each atom comprising the gas.
lonization is important because we must include electrons in computing the average mass per
particle, <m>.
Let us first consider a completely neutral gas, then

<my> = (£ mini/ n;), (5-10)

where the subscript “o” refers to a neutral gas. If we divide the numerator by m,,, we get u. Define
the atomic weight, A;, to be miy/m,, then (5-9) becomes:

Lo = (X Aini/ Zl’li). (5-11)

For a completely ionized gas, with atoms of atomic numbers Z; and weights A; = mj/m,, the mean
molecular weight is

Hion = EAini/Zni(l+zi), (5-12)
where z; is the number of free electrons that result from ionizing atom i.

Now we introduce , mass fractions X,, where Z is atomic number:

For Z =1, hydrogen, X; = X = Total mass of hydrogen/Total mass of gas .
For Z=2, helium, X; =Y = Total mass of helium/Total mass of gas.
For Z > 2, "metals”, Xz = Z = Total mass of metals/Total mass of gas.

Let N; be the total number of atoms of species i that are in a sample of the gas (it could be number
density). Then

Xi= Nimi/Z Nim; (5-13)

An alternate expression for mean molecular weight is often used. Starting with (5-9) we have
<m> = um,. Then



1/ um,, = £ N;/ ZNim; = (Total number of atoms of type i )/ (Total mass of gas). (5-14)
Now multiply the terms in the summation in the numerator by (N;m;)/ (Njm;) and rearrange.

ZNI(N|m|)/(N|m|) N ’7 .
l/MmH = ZNimi :ZNimiLZNi :ZN-m Xi (5'15)
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Now substitute that m; = A;m,, into (5-15):

1 N, i
o =ZNAmHXi=Z (5-16)

Finally, we solve for 1/u and get:

1 X, X
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(5-17)

Now consider a neutral gas. Recall that A; = mi/m,, so the atomic weight for H is 1 and for He it is
4. Then

1 _xily +<l> V4 (5-18)
Mo 4 Alq

It has been determined that a good value of <1/A>, is 1/15.5. For a completely ionized gas we have

Loy by aox 43y +<1+—Z> z, (5-19)
Ai 4 A ion

Hion i

for i =3 and only hydrogen, helium, and all metals are lumped together as Z.  For the term

1 _ o . :
<—+AZ> , the average value is about 1/2. Verify this. So, in general, we may write that

1/ = aXy + bX, +CXs + ... +iX;, (5-20)

where a, b, etc., are the values of (1+z;))/A;i and the values of z; are to be found from the Saha
equation and X1+Xo+ .. +X; =1.

Example: Consider a neutral gas made of 90% H atoms and 10% Helium atoms. We may then
take the total mass of a sample of the gas to be:

¥ Nim; = 9my + 1(4m,)) =13m.,.

Then X = Nymy/ X Njm; =9m,/ 13m, =0.69 and Y = 4m,/ 13m, =0.31. Then



1 =X +%Y =0.69 +0.25(0.31) = 0.77

y7]
or un=1.30. If the gas is completely ionized
tion = (2 x 0.69 + 0.75 x 0.31)* = (1.61)* = 0.62
Furthermore, neglecting the electrons, the number density of a gas is given by
n=[X+Y/A; + Zi(ZlA)]p (5-21)
5-4. Energy Transport
At position r within a star, the Luminosity is
L(r) = 41tr2( Frad + Feond + Feonv) (5-22)
This is the total power leaving a sphere of radius r due to radiation, conduction, and convection. Let
g(r) be the energy generated per unit mass at position r. This then contributes to an increment in the
luminosity of
dL = 4nr® g(r)p(r)dr (5-23)
If €=0 in a layer, then L is the same entering at leaving the layer. We can neglect Fong, €XCept when
the density is very high, such as in a white dwarf. Energy transport by convection will occur if the
density is sufficiently high or the opacity is high. We shall address convective transport later and
we now turn our attention to radiative transport.

5-4A. Radiative Transport of Energy

Assume the "gray atmosphere"” condition is valid, that is, the Eddington approximation for
solving the transfer equation may be used. Then

T4 = 3/4[ T (x +2/3)] (5-24)

and dt = -« pdr, where « is the mean opacity atr. Now take the derivative of (5-24) with respect
to optical depth:

d ray_d J3[s ]
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d ray_3|74d ]
(T )—4[Te dT(r+2/3)] (5-26)

Since the effective temperature is not a function of the optical depth, this becomes:

% T4 = %T;‘ = 3/4Fadlc (5-27)



Change variables from t to « p, then dt = « p dr, and we get

d 3 3
d—T(T4) =ZTe4 = Z (5'28)

Or, solving for the radiative flux:

4
Fag= 2o 90 251 4rodl (5-29)
3 xkp dr 3 «xp dr

3
Fog= 200 T dT (5-30)
3 kpdr
Hence the luminosity becomes
3
L(r) = 4nr’Frag = 4nr? 160 T° dT
3 kpdr

64nr’c T2 dT

L(r) = —
") 3 Kp dr

(5-31)

Hence, the radiative contribution to the luminosity is dependent on the opacity and the temperature
gradient dT/dr. One generally thinks that the luminosity is determined by the energy generation
mechanism via . But this is not so in the upper layers where ¢ is zero. After a long time, the star
adjusts itself so that dT/dr is such that the energy generated is carried off at the same rate it is

generated. If the mean opacity, «, is large, then dT/dr is steep and vice-versa.

5-4B. Convective Transport

The internal energies and densities of stars are so great that even slight mass motions have a
large influence on the luminosity. Therefore, an exact theory of convection is not needed.
Convection is so efficient that we don't need to ask how much energy is transported by this
mechanism but only, does convection occur. If it does then Fco,y dominates. If it does not, then F,q
dominates.

So we need a condition for convection to occur. Suppose a small mass element, dm, is in
equilibrium for some P, T, and p. Consider random perturbations occurring so that dm suddenly
undergoes a displacement downwards by or. In its new surroundings the pressure is P+6P and the
density is p+dp. The excess pressure will cause contraction of the volume of the mass element until
its pressure matches that of its surroundings. If this happens sufficiently fast, this will be an
adiabatic process. The new density will then be

p' = pt+dp = p+(dp/dP)agdP (5-32)

Hence, if the mass element now has a density that is still less than its surroundings, a buoyant force
will act on the element and cause it to rise back to its original level. In this case, random motions



will cancel and convection will be damped. But if the element feels a force which tends to move it
farther from its initial position, random motions are enhanced thereby causing convection to occur.
Hence, whether or not convection occurs depend on the density-pressure gradient, dp/dP.
Therefore, convection will occur if

(dp/dP)agdP > Spact (5-33)

Since, 0P and dp are very small, convection occurs if

5.
d P act d P adi

In essence, if density does not increase with depth fast enough, the lower layers will not be able to
support the upper layers without becoming unstable to convective motions. It is more common to
express the condition for convective transport in terms of T rather than p. From the ideal gas law,
with p=nm,

p = mP/kT (5-35)

Then, whenever the density, temperature, and pressure of an ideal gas vary, these changes must be
related by

1 P (T
dp = i [dp T d(Eﬂ (5-36)

The above equation is the total differential of dp. Substitute this expression for dp into (5-34). The
minus sign then reverse the inequality so that the condition for convection becomes:

(d(T/m)) >(d(r/m)J (5-37)
dP act dP adi

If the average mass per free particle, m, is not changing significantly, then this simplifies to

(@j %@j (5-39)
dP act dP adi

This says that if the temperature is changing at a faster rate than the adiabatic rate, convection will
take place. The adiabatic rate can be calculated as a function of the local conditions and the
composition of the gas. One may then check at any point in the model of the star to ascertain
whether convection will occur from (5-38). In reality, the temperature gradient need be only
slightly different than the adiabatic one for convection to carry the entire luminosity of the star from
layer to layer. Hence, in those layers where convection is occurring, conditions essentially follow
the adiabatic relation, viz.,

P = constant x p’ (5-39),

where v is the ratio of the specific heat at constant pressure to the specific heat at constant volume.
For an ideal gas, y = 5/3, if it is completely neutral or completely ionized. Hence in a convection



zone, one need not compute the luminosity as a function of local conditions, because convection
will carry whatever enters the bottom of the zone to the top of the zone.

If the mean opacity is very large, a steep temperature gradient is needed for radiation to
transport the luminosity through a layer. If the opacity becomes too large, then (5-38) will be
satisfied and convection occurs. This usually happens in the upper layers of cool stars where
neutral H and H™ exist and result in a high opacity. The neutral hydrogen extends deeper into the
star than does the H™ ion.

5-5. Constructing a Stellar Model
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To find the central pressure, we integrate the hydrostatic equilibrium equation, (5-4), from r =0
tor=R

AP =-G LR M (r)p(r)r=2dr (5-42)
Let M(r) = (4/3)rr’<p>, where <p> is the average density. Then
AP=_-G(4/3)x < p> j: p(r)rir2dr (5-43)
We further simplify by letting p = <p>, then we get
2 (R 2 1\ 02
AP ~-G(4/3)r < p> L rdr=-G(4/3)7 < p>* )R*-0) (5-44)

Multiply numerator and denominator by R to retrieve the total mass of star, M(r):
AP = P(R) — P(0) ~ -G[(4/3)nR3<p>](1/R)<p>(1/2) (5-45)

The quantity in the square brackets is the total mass of the star, M(R)= M.. Hence, the above
equation becomes:

P(R)—P(r=0)~-GM(R) < p>/2R. (5-46)
But P(R) =0 and P(r=0) is P.. Hence,

P. ~ GM.<p>/2R. (5-47)
Next we can get the central temperature (5-8) with P(r) = P..
Te = Pcumy/pek. (5-48)

We now integrate outwards from r = 0 to r = R.. Let ry be the radius of the first shell, then:

K
M = 4/ Foe dr fom (5)
Then AP = £-PM)= -G /um e /hY T EH

from (5-8)
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L"‘ ‘frrf;zé(f.)em) n from (5-23).



In (5-23), ry is really dr. One then reiterates to the surface of the star. Design a program that does

this.
A model consists of determining M(r), P(r), u(r), T(r), &(r), and L(r). In the case where ¢ =0, L is

constant. The difficult part of this endeavor is to find an expression for p(r). As a first
approximation, one may use (5-41), but then the constant a may have to be adjusted. One might

also try:
p(r) = pe(L1-1/R)". (5-49)

A value of n=3 is good.
The best models of the Sun indicate:

1. Most of the H in the core has already been converted to He.

2. The p-p chain dominates all the TNF reaction in the core

3. Energy transport is radiative out to 0.8 of the Sun's radius, and then convective from
there to the surface. This is because the high degree of the ionization in the interior

results in a small value for the opacity, «.

4. Convection dominates for the outer 0.2R | because of the steep temperature gradient,
dT/dr. Hence, dT/dr > adiabatic rate of cooling. Most of the opacity is due to the H
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Nuclear Fusion Reaction Rates
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(1) Motz, p. 344.
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The luminosity of a star is then:
r=R.«
L=X j cdm, (5-56)
r=0

where ¢ is given by (5-70) or (5-73), whichever is known. Do #115
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