
CHAPTER 4B 

 
4-4  Opacity 

 
 We now turn to the matter of determining what contributes to the optical depth of a medium, such 

as the layers of a star.  The theory here can be quite complex and a thorough exposition would take us 

deep into quantum mechanics.  So we can not completely go there.  

 Previously we have introduced the absorption coefficient , which is the fraction of the intensity 

that is absorbed over a distance, dx.  This parameter has dimensions of cm
-1

.  In general  depends on 

wavelength or frequency and is a function of temperature, pressure, and chemical composition.  We 

now introduce what is called the mass absorption coefficient, , which has units of cm
2
/g and is also a 

function of wavelength.  The relation between these two parameters is  = n, where  is the mass 

density in g/cm
3
, n is the number density of absorbers with cross-section, , for absorption or 

scattering  Again, in general, these parameters are wavelength dependent.  The term opacity in general 

refers to the degree that a medium is opaque to radiation.  Therefore, it can refer to , , or , but is 

usually meant to refer to by most authors. 

 

4-4.1 Classical Theory. 
 

 Radiation is absorbed by electrons which may be free or bound in an atom and occupying some 

energy level.  The classical picture of an electron bound to its nucleus was already introduced in the 

derivation of Planck's Law.   In this case, the electron is considered a harmonic oscillator responding to 

a variable electromagnetic field, which is what radiation is.   The electron is set into motion by this 

field and in so doing energy is removed from the field.  However, once the electron is set into motion, 

it begins to radiate and rid itself of some of the energy it has absorbed.  In a classical oscillator, this is 

called the damping response of the electron.  That is, its motion is damped by the fact that it is losing 

energy by radiating.  If the motion were not damped, the amplitude of the electron would continue to 

grow larger and larger.  By radiating, the electron obtains an equilibrium condition for its oscillation.   

That is, we consider the electron as a vibrating dipole carrying out damped harmonic motion and 

radiating in all directions.  In this sense it is a Hertzian oscillator.  We now can set up the equation of 

motion of the electron using Newton's 2nd Law of motion for this equilibrium condition and then 

attempt to solve the differential equation. 

 

         Fnet= ma =  Fi                    (4-32) 

 

        ma = m x  = -Kx - g x  + Exe                      (4-33) 

 

Note that each term in this equation is a force.  Here we are considering the vibration of the electron 

along the x-axis, m is the mass of the electron, K is the elastic restoring force produced by the nucleus, 

e is the charge on the electron, and E is the electric field vector of the electromagnetic wave.  The term 

g x is the damping force, which like the elastic restoring force is negative because it is opposite the 

electric force of the electric field of the radiation.  We now rewrite (4-33) as 

 

                x  +  x  + 

x  = Exe/m              (4-34) 

      

Here  = g/m is the damping constant, and  
2
=K/m=(2


 4





.  Now the electric field of the 

radiation is time dependent and may be written as Ex = Eoxexp(-it) = Eoxexp(-it).  The equation 



(4-34) is a classical differential equation whose solution is x = xoexp(-it).  By substituting these latter 

two expressions back into (4-34), we get 

 

           (-
2
 + i + 


xeEox/m             (4-35) 

 
From this we can find the value of xo: 

 

        xeEox/[m(-
2
 + i + 




  

Then substitute this value for xo back into our general solution for x and we get: 

 

     x = xoexp(-it) = eEoxexp(-it) / [m(-
2
 + i + 


    



or substituting for in terms of frequency: 

 

      x =eEoxexp(-it) / [m(-4



 + i2 + 4





   

 
 For astrophysical applications, we are interested in the propagation of electromagnetic radiation 

through gases, which are really dielectrics.  Electric fields applied to a dielectric cause polarization of 

the medium in that the electrons in atoms are displaced relative to the positive charges in the nucleus.  

Remember that electromagnetic radiation is a time dependent electric field at a any point in the 

dielectric or for any atom.  The displacement of the electrons from their unperturbed positions relative 

to the nucleus, x, gives rise to what is called a dipole moment, p, defined as: 

 

          p = ex = E               (4-38)

    

Here E is the electric field either static or time dependent and  is called the susceptibility or 

polarizability of the medium; it is not the absorptivity.   The above leads to 

 

          = ex/E                (4-39) 

 

And for a time dependent electric field we get; 

 

          = ex/Eoxe
-it

               (4-40) 

 

So we have a time dependent dipole or harmonic oscillator and the solution for the position of the 

charge is given by (4-37).  Substituting for x in (4-40) from (4-37), the factor  e
-it 

 in the numerator and 

denominator  cancel yielding: 

 

 

         = e
2
/ [4


m(


-


 + i2      

 

We see that  depends only on the properties of the atom and the frequency and not the 

electromagnetic field in which the atom finds itself. 

 If there are Ne electrons per cm
3
, then according electromagnetic theory, the dipoles will 

contribute a term 4Nep to the total electric field in the medium, D.  Then 

 

       D =E + 4Nep =  E + 4NeE = E(1 + 4Ne    (4-42) 

 



Therefore, D = E, where ε is the electric permittivity of the material, defined as:  

 

          = 1 + 4Ne          

 

Substitute here for α from (4-41), and we have 

 

               = 1 + Nee
2
/ [m(


-


+ i2      



 In any medium, the index of refraction, n, is c/v and n = 1/2
.   We see from (4-44), that  is 

complex and hence n is complex in general.  A complex index of refraction is needed when radiation 

passing through a medium is absorbed.  The complex part of the index of refraction is related to the 

absorption coefficient It is this relation that we want to determine.  To do this, let us write n as a 

complex number: 

 

         n =  = n – i.                  (4-45) 

 

Here n is the ordinary index of refraction when there is no absorption and  is the absorptivity 

parameter. Using (4-44), expand the square root of  by the binomial theorem, (1+x)
n
 = 1+ nx + … +, 

where n = 1/2 and x is the 2nd term on the right in (4-44).  We then get: 

          

      1 + (1/2)Ne
2
/ [m(


-


+ i2     


We transform (4-46) into a form more similar to (4-45) by multiplying the numerator and denominator 

of the 2nd term on the right by the complex conjugate of the denominator.  Then 

 

   n – i = 1 + (Ne
2
/2m) 
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  n – i = 1 + (Ne
2
/2m)
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Now n is the real part of (4-48), viz., 

 

     n = 1 + (Ne
2
/2m)
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and  is the imaginary part: 

 

       = (Ne
2
/2m)
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
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                (4-50) 

 

 For most astrophysical applications, we are interested in values of  near the resonant frequency 

o.  So when   o we may write o
2
 – 

2
 = 2(o – ).  Then (4-50) becomes: 

 



        = (Ne
2
/2m)
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        = (Ne
2
/8m)
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
         (4-51) 

       = (Ne
2
/16


m)

   22

0 2/

1

 
     (4-52) 

 

What we need to do now is relate to the absorption coefficient per atom .  To do this we need the 

expression for a traveling electromagnetic wave, viz., 

 

         E = Eo exp[2i(t -x/v)]       (4-53) 

 

This represents an electromagnetic wave traveling in the x-direction with speed v, where v = c/n.  

Substituting n = n –i into (4-53) we get 

 

       E = Eo exp[2i(t -xn/c + xi/c)]       (4-54) 

 

      E = Eo exp[2i(t -xn/c]exp(- 2x/c)       (4-55) 

 

This represents a wave undergoing an attenuation by the factor e
-x

 , where  = 2c.  Now the 

intensity of radiation varies with the square of the amplitude of the electromagnetic wave, that is,  

I ~ E2
, so  

 

      I = Ioe
-2x

 = Ioexp(-4x/c)         (4-56) 

 

But we have seen before that I = Ioe
-x

.  Hence, comparing the exponential arguments we have: 

 

         =  = n = 4c,        (4-57)  

 

Recall that  is called the mass absorption coefficient and  is the mass density.   Substituting for  

from (4-52) we get: 

 

      = n = (Noe
2
/4mc)

   22

0 2/

1

 
      (4-58) 

Here No is the number of bound electrons with resonant frequency o per unit volume and n is the 

number of atoms per unit volume possessing such bound electrons, so they are really the same number. 

 

herefore,                              = (e
2
/4mc)

   22

0 2/

1

 
       (4-59)

            

 Quantum theory leads to the same result with a modified meaning of  and No replaced by Nof, 

where f is called the oscillator strength or probability of the transition.  The values of f for some of the 

members of the hydrogen Balmer series are: 

 

fH = 0.6408           fH = 0.1193         fH  fH





For the strong lines of the alkali atoms,  f    0.98. 

 

 Now recall that  is the absorption coefficient per atom at frequency , and from (4-58): 

 

          = /n          (4-60) 

 

The total amount of isotropic radiation absorbed per unit volume in a unit solid angle per second in the 

range d will be 

 

        dI = nIdd          


The total amount of absorbed radiation per second over all solid angles per cm

3
 is then: 

 

     I = n ∫∫ddn∫d        



If we consider the continuum radiation in the vicinity of a spectral line, we may assume that I does not 

vary much over the frequency interval of integration where  is significant.  Then I may be taken 

outside of the integral and we have 

    

        I = n ∫d         



where the expression for  is taken from (4-59) and we include the oscillator strength.  This integral 

may be evaluated by trigonometric substitution so that (4-63) becomes 

 

        Io = ne
2
/mc)f        (4-64) 

 

We must recognize that this equation has limited application.  It has been assumed that I is independent 

of  and that Io is the total absorbed intensity over the entire spectrum as a result of electrons 

oscillating at resonant frequency o.  In other words, it is the total absorption in a specific absorption 

line or the strength of a line.  It does not produce the details of the profile of an absorption line.  The 

latter can only be found by integrating (4-62) in detail.  We take this matter up later. 

 

4-4.2 Other Sources of Opacity  

 
 As we have seen, one of the limitations in 

determining an atmospheric model of a star is in 

calculating , which in general is a function of 

temperature, electron pressure, and chemical 

composition and because values of f are 

uncertain.  

 It turns out that H and He, because of their 

high excitation potentials, are not important for 

spectral classes later than F but important for O, 

B, and A star.  The Balmer discontinuity may be 

used as a measure of the importance of H 

absorption.  The Balmer discontinuity arises 

from the Balmer continuum absorption that is 

short ward of the Balmer limit.  This is 



illustrated in the diagram to the left.  The Balmer discontinuity, D, is strongest at spectral type A2.  

 The spectra of two stars, illustrating how the Balmer discontinuity changes with spectral type is 

shown in the diagram below, where wavelength increases to the right.  The spectrum for the O9 V star 

shows no noticeable value for D, but there is a conspicuous value of the Balmer discontinuity for the 

later type star of spectral type B5e.  The letter "e" here means there are emission lines in the spectrum, 

implying the star has an extended atmosphere. One also notes the relatively strong Balmer absorption 

lines in the latter star’s spectrum.  

 One should be aware that the spectra displayed in the above diagram reflect the convolution of the 

spectral response of the detector with the actual spectral distributions of the stars.  This is why the 

spectrum falls off so sharply at the longer wavelengths and also in the ultraviolet, but more slowly.  

That is, the detector is more sensitive to the visible than it is at other wavelengths.  The actual peak in 

the intensity for each curve is not in the red, as it appears, but in the UV. 

 

 In 1939, it was discovered that H

 made an important contribution to the opacity in the 

atmospheres of solar like stars.  It turns out this opacity is gray, that is, it is independent of wavelength.  

In the 1920s, Sir Arthur Eddington, a renowned British astrophysicist, found a solution to the transfer 

equation for a gray atmosphere.  This is: 

 

        T
4
 =(3/4)Te

4
 + 2/3)         (4-65) 

 

Te is the effective temperature of the star.  One can see that this occurs in the atmosphere of the star at 

and optical depth of 2/3.   

 It worth repeating here what was stated previously, namely, that the radiation one observes coming 

from a star originates in various layers of different temperatures and not from just a very thin surface 

layer. Since we observe the flux of a star to be the flux from layers of different temperatures, stars 

really do not radiate strictly as black bodies.  The temperature of the photosphere determined from 



Wien's Law or Planck's Law is only the effective temperature, Te.  Eddington’s solution, gives the 

value of the temperature at various optical depths.  Do RJP-76 & 80. 

 

 At very high temperatures, electron or Thomson scattering becomes important because of all of 

the ionization.  The Thomson cross section is 

 

       T = 8e
4
/3me

2
c

4
 = 6.65 x 10

-25
 cm

2
.                                     (4-66) 

 

 For a thorough analysis of the opacity one must find the total opacity due to all sources for both 

the continuum and the line.  This is a very complex problem. 

 

4.5 Details of Line Formation 

 
 For bound-bound transitions, we get discrete line absorptions or emissions as opposed to 

continuum absorptions and scatterings.  From (4-59), the line absorption coefficient is 

 

         = (e
2
/4mc)
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    (4-67) 

 
From quantum theory it is found that we need to include the oscillator strength, f, and a factor, in the 

square brackets, that takes into account induced emissions, which we shall not derive.  Hence,  

becomes: 

 

     =  [1-exp(-ho/kT)](e
2
/4mc)
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f             (4-68) 

 

If we integrate this over all frequencies we get: 

 

 

        =  [1-exp(-ho/kT)](e
2
/mec) f       

 

which has units of cm
2
 Hz, since  we have integrated over all frequencies or wavelengths (Swihart, p. 

131).  Here  is a broadening function. It should be noted that (4-69) is not valid if I is not constant 

over the entire spectrum.  If one wishes to know only the absorbed flux over a narrow range of 

frequencies or wavelengths near the resonant frequency , one must integrate (4-62) over that 

particular range of frequencies. This is usually done by numerical methods.  

 The broadening function has the following property:  dor dis the probability that the 

wavelength of the absorbed photon lies between  and + d, assuming equal intensities for all .  

Hence, 

            ∞  

           ∫0  d        


The broadening function gives the line profile its shape, which is usually a Gaussian that has its peak at 

o, which is the central frequency of the line. 

 


