
CHAPTER 4A 
 

RADIATION TRANSFER AND LINE FORMATION 
 

4-1. Emission and Absorption of Continuum Radiation 
 
4-1A. The Transfer Equation 
 
Consider a beam of radiation, Io(λ), incident 

on the boundary of a layer of an absorbing 

medium, as shown the diagram. The 

thickness of the layer is L.  Let αλ be the 

absorptivity of the medium at wavelength λ,  

that is the attenuation factor per unit path 

length through the medium. The absorptivity 

has dimensions of cm
-1

, so αλdr is 

dimensionless. The differential change in the 

intensity of the beam at every point along the 

path through the layer is 

 

dIλ(r) = -αλIλ(r)dr              (4-1) 

 

The negative sign means that the change is a decrease in the intensity. 

     Now we introduce a quantity called the optical depth τ. 



 



 



 

 



4.1B.  The Local Thermodynamic Equilibrium Case 



   



4-2.  Plane Parallel Atmosphere 

 

 If the atmosphere of a star is sufficiently thin, as is usually the case, the curvature 

can be ignored, and the atmosphere may be considered to be comprised of horizontal 

and parallel layers as shown below.    The optical depth of the atmosphere to a depth z is 

 

              
 

 
                     (4-26). 

 

Now      is the absorption factor for the material 

that is directly above the geometric depth z.  See 

diagram.  The top of the atmosphere is at z=0.   

 To simplify matters, we assume LTE.  As we 

discussed above, this means conditions do not 

change from point to point along the path of 

integration.  For example, the temperature is 

constant throughout the atmosphere and equal to 

some mean value that produces the observed continuum radiation.  This is a first 

approximation.  Furthermore, no incident radiation from the lower layers survives to 

emerge from the top of atmosphere. That is each layer of the atmosphere is optically 

thick to the radiation from below.  If this were not so, there would be a net flow of 

radiation in violation of LTE.  

 Now integrate downwards into the atmosphere to z = ∞ (the bottom of the 

atmosphere) along the path at angle θ.  Then the intensity emerging at an angle θ from a 

point at the top of the atmosphere is given by (4-16) with z= L-r as 

 

              
                  

 

 
                               (4-27) 

 

We saw that for the optically thick case,  Iλ(z,θ) = jλ/αλ, for a layer at depth z. Also, in 

LTE,  Iλ(z,θ) = Bλ(T), the Planck function, or jλ(z) = αλ(z)Bλ(T).  Then (4-27) becomes 

 

                     Iθ =   
 

   
(T)e

-


/cos
 αλ(z)dz/cos                                     (4-28) 

 

Now change variables to optical depth , where d = α(z)dz      

                I = 


0

B(T)e
-


/cos
 d/cos     

In (4-29), T = T() but cos  is constant over the integration.  Generally, T and are not known 

functions of z. 

 Actually, the radiation that is observed comes from various layers of different temperatures and 

not from just a very thin surface layer.  So what is called the photosphere of a star is of some extent 

and is defined as the layer down to an optical depth of 1.  That is, we receive most of the observed 

radiation from a star down to where Iobs = Ioe


 = (1/e)Io or Iobs = 0.37Io, where Io is the intensity at the 

bottom of the photosphere. 



 Since we observe the flux of a star to be the flux from layers of different temperatures, stars really 

do not radiate strictly as black bodies.  The temperature of the photosphere determined from Wien's 

Law or Planck's Law is only an effective temperature. 

 

4-3. General Solution of Transfer Equation 
 

 Now we consider a more general solution of the transfer equation, starting with (4-13) 

 

           dI/d = S - I


For simplicity, we shall drop the wave length dependence and multiply both sides by e

d to get: 

 

        dI e

  = S e


d - I e


d

 

or         dI e

  + I e


 d = S e


d  

 

Recognize that the left side is a differential and we get 

 

          d(e

I) = S e


d 

 

Now integrate both sides from -  to  0 : 

 

       Ie
0 
- Ie

-
   =  ∫ Se


d                                                           

 

or        Ie = Iie
-
 +  ∫ Se


d                                                        (4-30) 

 

where Ie is the emergent intensity , that is, the intensity at z=0 (=0).  Ii or Io is the incident or original 

intensity entering the bottom of the layer from the layers below at higher optical depth.  Remember 

that this is for a specific wavelength.   

 If we consider the special case where the source function is constant, we get 

 

  Ie = Iie
-
 + S ∫e


dIie

-
 + S [e

0
 – e


] = Iie

-
 + S [1- e


 ],   (4-31) 

 

which is the same as (4-18) 

 

Do RJP-70, 72, 74. 

 

 

 

 
 


