Chapter 2B

So

$$
\begin{aligned}
& \bar{\epsilon}=-\frac{\partial}{\partial(1 / k T)}\left[\ln \sum_{n} e^{-\epsilon_{n} / h T}\right]=\frac{h v}{2}+\frac{\partial}{\partial(1 / h T)}[\ln x] \\
& \bar{\epsilon}=\frac{h v}{2}+\frac{\left(\partial / \partial(h h T)\left[1-e^{-h v / h T}\right]\right.}{1-e^{-h v / h T}} \\
& \bar{\epsilon}=\frac{h v}{2}+\frac{-\partial / \partial(1 / h T)\left[e^{-h v / h T}\right]}{1-e^{-h v / h T}} \\
& \bar{\epsilon}=\frac{h v}{2}+\frac{h v e^{-h v / h T}}{1-e^{-h v / h T}}
\end{aligned}
$$

Multiply the second term in the above by $e^{h v / h T} / e^{h v / h T}$:

$$
\begin{equation*}
\bar{\epsilon}=\frac{h v}{2}+\frac{h=}{e^{h v / h t}-1} \tag{2-37}
\end{equation*}
$$

As $T \rightarrow 0, \quad h \nu / \hbar T \rightarrow \infty$. So the last term vanishes and $\bar{\epsilon}=\mathrm{hv} / 2$
So this term is the zero point energy. When T is large, what happens. Expand e^{x} where $x=\hbar \omega / \hbar T$.

$$
\text { Now } e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \cdot
$$

Then from (2-37)

$$
\begin{aligned}
& \bar{E}=\frac{h \nu}{2}+h \nu[1+\frac{h \nu}{k T}+\underbrace{\left.\left(\frac{h v}{k r}\right)^{2}\left(\frac{1}{2!}\right)+\cdots-1\right]^{-1} \text { is large }}_{\text {drop because }} \\
& \bar{E}=\frac{h v}{2 \rightarrow 0}+h v\left[\frac{h v}{k T}\right]^{-1} \\
& \bar{\epsilon}=\frac{h v}{h v}\left(k_{2} T\right) \rightarrow k^{h} T \quad \text { for very large } T \text {. }
\end{aligned}
$$

From electromagnetic theory it may be shown that

$$
\begin{equation*}
E=\frac{\lambda^{4}}{8 \pi} u_{\lambda} \tag{2-41}
\end{equation*}
$$

where $u_{\lambda} d \lambda=$ energy of radiation in the spectral

$$
\text { interval } \lambda \longrightarrow \lambda+d \lambda
$$

Now assume that T is sufficiently large that

$$
\frac{h_{2}}{2} \ll \frac{h_{2}}{e^{h v / h T}-1}
$$

Then from (2-37) we may write

$$
\begin{equation*}
\bar{\varepsilon}=\frac{h v}{e^{j v / k T}-1} \tag{2-42}
\end{equation*}
$$

Now combine (2-41) and (2-42) to obtain:

$$
\begin{equation*}
\frac{\lambda^{4}}{8 \pi} u_{\lambda}=\frac{h v}{e^{h v / k T}-1} \tag{2-43}
\end{equation*}
$$

And so,

$$
\begin{equation*}
u_{\lambda}=\frac{8 \pi h v}{\lambda^{4}}\left(\frac{1}{e^{h v / k T}-1}\right) \tag{2-44}
\end{equation*}
$$

It may be shown (Appendix C) that
$50:$

$$
\begin{equation*}
t_{x}=\frac{4}{c} F_{x} \tag{2-45}
\end{equation*}
$$

$$
\begin{equation*}
F_{\lambda}=\frac{2 \pi h \nu c}{\lambda^{4}}\left[\frac{1}{e^{h \nu / h T}-1}\right] \tag{2-46}
\end{equation*}
$$

Substituting $\nu=c / \lambda$

$$
\begin{equation*}
F_{\lambda}=\frac{2 \pi h c^{2}}{\lambda^{5}}\left[\frac{1}{e^{h c / \lambda k T}-1}\right] \tag{2-47}
\end{equation*}
$$

Equation (2-47) is Planck's radiation law. Let B_{λ} be the black-body intensity. Then for an isotropic and homogeneous radiation field, $\mathrm{F}_{\lambda}=\pi \mathrm{B}_{\lambda}$. Therefore:

$$
\begin{equation*}
B_{\lambda}=\frac{2 h_{c}^{2}}{\lambda^{5}}\left[\frac{1}{e^{h_{c} / \lambda h_{2} T}-1}\right] \tag{2-48}
\end{equation*}
$$

When B_{λ} is plotted versus wavelength for different temperatures, one gets the different curves that are shown in the diagram below. The curves are called "Black-body Curves" or "Planckians."

$$
\begin{equation*}
F_{\lambda}(T)=\pi B_{\lambda}(T)=\frac{\pi\left(1 / 9 / \times 10^{-5}\right) \lambda^{-5}}{\left(e^{1 / 439 / \lambda T-1)}\right.} \tag{2-49}
\end{equation*}
$$

In this equation, λ must be in centimeters and the units for F_{λ} are $\operatorname{ergs} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{cm} . \quad$ RJP-32, \& 33 .

To find $\lambda_{\text {max }}$, the wavelength at which F_{λ} is a maximum, we differentiate Planck's law and set the result equal to zero. Solving for λ we get Wien's Displacement Law.

$$
\begin{equation*}
\lambda_{\max }=\frac{0.2898}{T} \quad(\lambda \text { in en }) \tag{2-50}
\end{equation*}
$$

For $\lambda_{\text {max }}$ in A :

$$
\begin{equation*}
\lambda_{\text {max }}=\frac{2.898 \times 10^{7}}{T} \tag{2-51}
\end{equation*}
$$

Here $\sigma=5.67 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} / \mathrm{K}^{4}$ is the Stefan-Boltzmann constant. We recognize that $\mathrm{F}_{\text {bol }}=\sigma \mathrm{T}^{4}$ is the Stefan-Boltzmann Law, the total energy emitted per second from every square cm of a body over the entire EM spectrum. Geometrically, this is the area under any of the curves shown in the diagram above. Also, recall that $\mathrm{L}_{*}=4 \pi \mathrm{R}_{*}{ }^{2} \sigma \mathrm{~T}^{4}$.

Now consider the case where λ is large. Then $\exp (h c / \lambda \mathrm{kT})$ and $\mathrm{e}^{\mathrm{x}} \cong 1+\mathrm{x}+\ldots$, , where $\mathrm{x}=$ $\mathrm{hc} / \lambda \mathrm{kT}$, so

$$
\mathrm{B}_{\lambda} \cong\left(2 \mathrm{hc}^{2} / \lambda^{5}\right)[1 /(1+\mathrm{x}-1)] \cong\left(2 \mathrm{hc}^{2} / \lambda^{5}\right)[1 /(\mathrm{hc} / \lambda \mathrm{kT})] \cong 2 \mathrm{ckT} / \lambda^{4}
$$

which is the Rayleigh-Jeans approximation. Now consider λ to be small and T not very large, then he/ $\lambda \mathrm{kT} \gg 1$. So

$$
\mathrm{B}_{\lambda} \cong\left(2 \mathrm{hc}^{2} / \lambda^{5}\right)[1 / \exp (\mathrm{hc} / \lambda \mathrm{kT})] \cong\left(2 \mathrm{hc}^{2} / \lambda^{5}\right) \mathrm{e}^{-\mathrm{hc} / \lambda \mathrm{kT}},
$$

which is the Wien approximation. See Fig. 2, in Chapter 2A.
Do RJP-34, 35, 36.

