
CHAPTER 6 
 

Celestial Mechanics - Computing Planetary Orbits and Positions 
 

6-A.  Orbital Position as a function of time  

With the help of his three laws, Kepler devised a method for 

computing the position of a planet in its orbit as a function of time, using 

polar coordinates r and θ (some authors use υ, upsilon, instead of theta). 

The diagram to the right illustrates how the rectangular coordinates x and 

y are related to the polar coordinates r and θ. 

Computing θ or υ for a given time t is the most challenging part 

of the problem.  Kepler’s method involves the solution of a transcendental 

equation that he derived now called Kepler's equation.  The next diagram 

to the right shows the geometric construction for Kepler's calculation of θ 

or υ. The Sun (located at the focus of the elliptical orbit) is labeled S and the 

planet is P. The auxiliary, red circle is an aid to the calculation.  The point c 

is on the line of apsides and is the common center of the auxiliary circle and 

the elliptical orbit. The line xd is perpendicular to the semi-major axis and 

through the planet P. The blue shaded sectors are arranged to have equal 

areas by positioning of point y. The Keplerian method assumes an elliptical 

orbit and the four points: 

S, the Sun (at one focus of ellipse); 

z, the perihelion point 
c, the common center of the ellipse and auxiliary circle 

P, the planet 

Also, 

 a = cz  is distance between the center of the ellipse, c, and the perihelion point, z, and is equal to the semi-major 

 axis.  The latter is also the radius of the auxiliary circle. 

 ε = cS/a  is the eccentricity, 

 

 is the semi-minor axis, 

 
r = SP is the distance between Sun and planet.  This is the radius vector. 

 

 θ =  the angle zSP and is called the true anomaly, that is, the direction to the planet as seen from the Sun 

relative to the perihelion position.   
 
M is the angle zcy and is called the mean anomaly.  It is the value of the angle in polar coordinates relative to 

the center of what is called the auxiliary circular orbit.  The radius of the latter is equal to the semi-major axis of 

the elliptical orbit.  

 

The procedure for calculating the heliocentric polar coordinates r and θ (or υ) of a planetary position as a function 

of the time t since perihelion, and the orbital period P, is done in four steps: 

Step  1.  Compute the mean anomaly M (in radians) from the formula:  
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 Here P is the period of revolution and t is the time since perihelion passage, when M = θ = 0.  P and t must be in 

the same units. 

 
 Step  2.  Compute the eccentric anomaly, E , by solving 

 Kepler's equation:  

 

 
  Again, ε is the eccentricity of the ellipse. Notice that M 

is less than E before aphelion.  The greater the value of  , 

the greater the difference between E and M.  This 

transcendental equation may be solved by iteration in the 

form: E = M + ε sin E.  E must be in radians.  Take the 

initial value of E to be equal to M.  The solution converges 

after about six iterations. 

 
Step 3. Compute the true anomaly, υ ( θ in the diagram ),  

 by the equation: 

 

 

      
       

        
 

  or equivalently: 

   Here e is the eccentricity.  Therefore: 

  Here one must be wary of the proper quadrant of υ after using the arctangent function.  The 

 proper quadrant is better determined by using the equation with the cosine function. 

 

Step 4.  Compute the heliocentric distance r from the first law: 

 

         
 

         
 

  

 Here, p = a(1 – ε
2
). 

In the special case of a circular orbit, ε = 0, which gives simply   = E = M. 

Assignment 6-A 1: 

http://en.wikipedia.org/wiki/Eccentric_anomaly
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 Write a program that computes the position of Mars in its orbit every 10 days starting with the perihelion passage.  

Plot the results with Excel.  Obtain all necessary parameters from: nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html.  

Normalize r to the perihelion distance, that is, take r to be 1.00 at perihelion. Derive by hand, how you did this on a 

separate page and then incorporate the resulting equation into your program.  

 How would you go about plotting the position of Mars on a rectangular star chart relative to the equatorial 

coordinate system?  In order to answer such a question, we need to discuss how to transform position in one coordinate 

system to a position in another coordinate system.  For example, we want to learn how to transform the position of a 

planet in a coordinate system in the plane of its orbit to the ecliptic coordinate system and then to the equatorial system.  

6-B.  Rotation of Coordinates 

 In many instances in astronomy, we need to transform a position, x, y, and z, in one coordinate system to a 

position x', y', z' in another coordinate system.  The second coordinate system, or prime system, has its axes rotated 

relative to the original coordinate system by an angle θ. This angle is not to be confused with the true anomaly defined in 

the previous section. The angle  now is just some arbitrary angle. First consider the simple case of a two-dimensional, or 

planar, coordinate system, such as the plane of an orbit.  See the diagram below. Using some trigonometry we derive the 

transformation as shown: 

 

A matrix is defined to be an array of numbers that obeys certain laws of operation. We also define the two matrices 

    

 and   
 

The matrix operation shown below produces the above transformation equations for x, y to x', y'.   

 

 
This operation is called row–column matrix multiplication.  That is, each element in a row in the first matrix on the right 

side of the equal sign is multiplied by each element in the column of the second matrix on the right and the results are 

added.  The result is the set of transformations equations given above. We shall need this kind of operation for 

transforming the positions of planets in their orbits to any other coordinate system.   

 In the case of 3 dimensions, the above rotation may be visualized as a rotation around the z-axis, which is 

perpendicular to the xy plane.  In this case we have 
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Multiplication of the two matrices on the right yields: 



 

                    

                         

                = z 

 
Rotational matrices may be written for rotation around any axis. 

 

6-C.   Orbital Elements 
 

 We now turn to defining the orbital elements of a body such as a planet, asteroid, comet, or any satellite moving in 

orbit about its primary.  To do so, one must distinguish between the numbers that: 

   (1) Describe the position of an orbital plane in space (the orientation elements) relative to some 

       coordinate system,  

 (2)  The elements that describe the size and shape of an orbit, 

 (3)  The elements that describe the orientation of the orbital conic in its plane, and  

 (4)  The elements that describe the position of a body in its orbit at some epoch of time. 

 

Such an orbit is shown relative to the ecliptic plane in the diagram below. In this diagram and the discussion that follows, 

the angles  and   are not the same.  

 

The xy-plane is the plane of the ecliptic, that is, the plane of the Earth’s orbit around the Sun 

 

The orbital plane of the planet is inclined to the plane of the ecliptic by the angle i.  

The orbital nodes are the points where the orbit intersects the ecliptic plane.  The ascending node is the point where the 

planet crosses the ecliptic plane moving from south to north, relative to the ecliptic poles. 

The line connecting the two points of intersection of the orbit with the ecliptic plane is called the line of the node. It is the 

line SN.  
The positive direction of the x-axis is taken as the line from the Sun to the vernal equinox, VE. The z-axis is towards the 

north ecliptic pole.   

 

  



 For (1), the orientation of the planet’s orbit relative to the xyz system is defined by: 

 

  i, the inclination of the plane of the orbit to the plane of the ecliptic, and 

 

  ,  the longitude of the ascending node. This angle is in the plane of the ecliptic. 

 

Assignment 6-C 1: Use SKYLAB to find  for the planet Mars.  You do this by trailing Mars in the SKYLAB program 

Skymation. 

 
 For (2), the size and shape of the orbit are determined by the elements: 

 

  a, the semi-major axis, and 

  , the eccentricity. For an elliptical orbit, 0 <  < 1.0.  For a parabola,  =1.0 and for a hyperbola,  > 1.0.   

 

 Finally, for (3), the orientation of conic in its plane is determined by the angle ω,  which is the angle measured in 

the orbital plane from the line of the nodes, SN,  to the perihelion point, P.  The positive sense of ω is the direction of 

motion of the planet in its orbit.  Be careful so as not to confuse  and ω. In most references, ω is called the argument of 

perihelion.  It should not be confused with what is called the longitude of perihelion, .  The latter is defined as  + ω, 

even though these two angles are not in the same plane.  In most references,  and  are given, but not ω. However, once 

 and  are known, ω is found by subtraction.   

 

Summary: 

 

        True anomaly is   (in plane of orbit). 

  Longitude of ascending node is , the angle (in plane of ecliptic) from the VE to the ascending node. 

  Argument of perihelion is , the angle (in plane of orbit) from the line of the nodes to perihelion. 

  Longitude of perihelion is  =  +  (in 2 different planes). 

  Position angle from ascending node is  = + -2 (in plane of orbit).  This relation is obtained by noting 

  in the diagram above that 2 -  =   - . 

 

6-D.  The Geocentric Coordinates of a Planet

 
 In section 6-A, we have shown how to find the position of a planet in its orbit at time t since its perihelion 

passage, that is, how to find r and  .The latter are heliocentric polar coordinates in the plane of the orbit. We now turn 

our attention to computing the geocentric Cartesian coordinates of a planet in the equatorial system.  In order to 

accomplish this we need to make several transformations of coordinates.   

 We define the orbital plane to be the x1y1 plane with the x1-axis to be along the line of the nodes.   Hence, the z1-

axis is perpendicular to the orbital plane. (In the diagram below, X is along the x1-axis and Y is along the y1-axis).  



Then we have: 

 

x1 = r cos 

         y1 = r sin       

     z1 = 0, 

 

where  =  +-2, as shown in the diagram above.  However, cos  and sin  are the same values as the cos and sin of   

+ , since these functions are periodic in 2.  The above are the heliocentric Cartesian coordinates of a planet in the plane 

of its orbit, relative to the line of the nodes 

 Next we transform these coordinates to a coordinate system, x2y2z2, where x2 is also in the direction of the line of 

the nodes.  However, the x2y2 plane is now the plane of the ecliptic with the z2 direction to be towards the north ecliptic 

pole.  This is a coordinate system that is rotated around the x1-axis by the orbital inclination, - i.  Hence, 

 

 x2 = x1 = r cos  

 y2 = y1 cos i = r sin  cos i 

 z2 = - y1 sin i =  y1 sin i, 

 

since cos (-i) = cos (i) and sin (-i) = - sin (i).  These are still heliocentric Cartesian coordinates but in the plane of the 

ecliptic not the plane of the planet’s orbit. 

 Now we perform a third rotation of coordinates.  This time we rotate backwards through angle  around the z2-axis 

until the x2-axis coincides with the direction to the vernal equinox.  The x3y3z3 coordinate system is still in the ecliptic 

system, but the x3-axis is towards the vernal equinox instead of the point on the ecliptic where the ascending node of the 

planet’s obit is located.  Hence, the transformation equations are 

 

  x3 = x2 cos  - y2 sin  

  y3 = x2 sin  + y2 cos  

  z3 = z2, 

 

where again, we have used the fact that sin (-) = -sin .  Now substitute for the values of x2, y2, z2 from above and factor 

out r to get: 

 

   

  x3 = r (cos  cos  - sin  cos i sin ) 

 y3 = r (cos  sin  -  sin  cos i cos) 

 z3 = z2 = r sin   sin i.  

 

 It should be recalled that  =  + and the true anomaly are calculated for some time t as explained above in 

section 6-C. The values of  and  must be looked up, since they are not easy to determine except through observations.   

 We now transform to the equatorial system, x4y4z4, by a rotation around the x3-axis by the obliquity of the ecliptic, 

-q.  Hence, 

 

  x4 = x3 

  y4 = y3 cos q – z3 sin q 

  z4 = y3 sins q + z3 cos q. 

 

These are the heliocentric Cartesian coordinates of a planet in the equatorial system. 

         Now we must find the position of the planet relative to the Earth, xo, yo, zo, that is, the geocentric coordinates of the 

planet in the equatorial system.  In Fig. 6-D1, the red frame of reference is the geocentric one. We define the heliocentric 

coordinates of the Earth in the celestial equatorial system to be xE, yE, zE.  Then 

 

xo = x4 - xE 

yo = y4 - yE 

 zo = z4 – zE 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What are usually given in almanacs are the geocentric equatorial coordinates of the Sun, which are identified as x, y and 

z.  However, we shall refer to them as xS, yS, and zS.  (Before 1981, The Astronomical Almanac lists these coordinates as 

Xo, Yo, and Zo.)  Now the heliocentric coordinates of the Earth, xE, yE, zE, are just the negative of the geocentric 

coordinates of the Sun. Hence, 

 

                                                                         xo = x4 + xS 

                                         yo = y4 + yS 

                                          zo = z4 + zS 

 

  

   

So at this point, we compute xo, yo, zo by looking up xS, yS, zS in The Astronomical Almanac, which is published by the 

US Naval Observatory.  Now from the geometry shown in Fig. 6-D2, we obtain: 

 

   

 

  xo = x4 + xS =  cos  cos  

  yo = y4 + yS =  cos  sin  

  zo = z4 +  zS  =  sin  

 

In Fig. 6-D2, P is the planet and E is the Earth. The x, y, and z axes are the equatorial geocentric coordinate system.  The 

x-axis points to the vernal equinox, the y-axis points to a place on the celestial equator at right ascension 6 hours, and the 

z-axis points to the north celestial pole.   

 

 

The above set of equations relate xo, yo, zo to the right ascension and 

declination of the planet and the distance of the planet from the Earth, 

. 

  Hence, we have three equations in three unknowns and we can solve 

for , , and , once we have computed xo, yo, & zo. 

  

 The procedures that we have developed here are essentially the 

same for computing the position of any body in the solar system, 

whether it be a planet, comet, or asteroid.  

 

 It is also the same procedure for computing the orbit of any body 

moving around any other body, for example, the orbit of a star in a 

binary star system. 

 

 

 

 

 

 

 

Fig. 6-D1. Heliocentric coordinate system 

Fig 6-D2.  The Geocentric equatorial 

coordinate system 



 


