
CHAPTER 11 
 

Stellar Photometry 

11-1.   Brightness in General:  

     Brightness may be defined as the amount of radiant energy received from a light source per 

second within a certain bandpass. By radiant energy is meant the energy carried by electromagnetic 

radiation or waves. A bandpass is usually an interval of contiguous wavelengths of the total 

electromagnetic spectrum. Brightness also depends on the size of the telescope, the area of the 

detector or sensor, and the sensitivity of the detecting device that is used. 

 The brightness at a unique wavelength is called monochromatic brightness, b. The brightness 

in a bandpass is known as polychromatic brightness, b.  

11-2.    Apparent brightness:  

     Apparent brightness is the brightness of an object as seen from the Earth. That is, how bright an 

object appears to be depends on the distance of the object from the observer. One cannot use apparent 

brightness to compare stars as to which are truly bright or faint, since stars are at different distances 

from the Earth.  

        Hipparchus, circa 150 BC, devised what is called the magnitude system for expressing stellar 

brightness.  He divided all the stars visible to the unaided eye into 6 different classes of brightness. 

He identified a number of stars that he considered were the brightest that could be seen and called 

them 1st magnitude (designated as m=1). The faintest stars visible to unaided eye he classified to be 

6th magnitude (m=6). The remaining stars were assigned magnitudes from 2 to 5.    

 Note: These are apparent magnitudes because they are an attempt to measure brightness as 

seen from Earth.  Furthermore, they are apparent visual magnitudes, since the human eye only 

detects or is sensitive to a limited portion of all the radiations emitted by an object.  This portion is 

called the visible spectrum or the visible bandpass.  

        After the invention of the telescope, fainter stars could be seen and these have been assigned 

magnitudes >6. With today's technology, stars as faint as m=28 can be detected with very sensitive 

electronic devices. Furthermore, the magnitude system has been defined more precisely so that 

fractions of a magnitude may be assigned, and more objectively, using instruments rather than the 

human eye.  

        In the modern magnitude system, a step or difference of 5 magnitudes (Δm=5) is defined to 

represent a brightness ratio of exactly 100.  That is, we receive 100 times more light energy per 

second from a first magnitude star than we do from a 6
th

 magnitude star, and we receive 100 times 

more light energy from a 4
th

 magnitude star than we do from a 9
th

 magnitude star.  

       A difference of 1 magnitude (Δm=1) corresponds to a brightness ratio equal to the fifth root of 

100, which is approximately 2.512.  The brightness ratio of two stars that differ in magnitude by any 

amount is then 2.512 raised to a power equal to their difference in magnitude, Δm, that is,  



B1/B2 = (2.512)Δm.
 

 
 
       If we now assume that the faintest stars seen by the unaided eye are exactly 6th magnitude,  then 

some of the stars that Hipparchus had called 1st magnitude were actually brighter than 6th by more 

than 100 times.  This necessitated introducing negative magnitudes, so that the apparent magnitude of 

the brightest star, Sirius, is now m= -1.47. 

  The magnitude system may also be assigned to any object, including the Sun (m=-27),  Moon 

(m=-12.5, when full), planets (Venus gets as bright as -4.4), comets, galaxies, etc.  If the Sun were 

viewed from the outskirts of the Solar System it would appear to have an apparent magnitude of 

about -2.  

11-2.    Absolute, Intrinsic, or true Brightness  

 This is the true brightness of an object, independent of its distance. The intrinsic brightness of 

star depends only on its:  

1. Surface brightness, .  

2. Radius, R, or surface area.  

11-3.    Surface Brightness ( )  

     This is the total amount of radiant energy emitted from, passing through, or falling on a square 

centimeter per second.  

    The surface brightness or flux of a star, , expresses how much energy is radiated into  

space from every square centimeter of a star's surface per second. The surface brightness of a star 

depends only on the surface temperature of the star, T, and is given by the Stefan-Boltzmann Law:  

                                                                   B* = σT4
  

where σ (or lower case Greek sigma)  is a constant of proportionality, which must be measured in the 

laboratory. That is, the flux of a star is directly proportional to the fourth power of the absolute 

temperature and no other physical property of the star. The factor T
4 

is also known as the integrated 

or bolometric surface brightness, or bolometric flux of a star.  

11- 4.    Luminosity 

   This is an expression of the total amount of radiant energy that a star emits into space  every 

second. The symbol for luminosity is L.   Luminosity is a way of expressing the intrinsic or true 

brightness of a star.  Therefore, luminosity depends only on the surface temperature and radius of the 

star and it does not depend on the distance of the star.   That is 

                                                   x (surface area),  

where the surface area depends on the radius of the star, such that Area = 4π .  Then: 



L* = 4R
2
T

4 
                            (11-4.1) 

Here R is the radius of the star and T is the surface temperature. The luminosities of stars are usually 

given in terms of the Sun's luminosity, e.g. L* = 8.00L


. 

 A commonly used unit of luminosity is the watt.   For example, the Sun's Luminosity is  

 3.90 x 1026 watts.  

 

 Luminosities for other stars are usually given in terms of the Sun's luminosity, .  That is, 

the total amount of energy that the Sun emits per second is called 1 solar unit of luminosity. A star 

that has a luminosity 100 times greater than the Sun's would be written as L* = 100  

      As the total light from a body travels outwards into space, it must pass through successive, 

concentric spheres of larger and larger surface area.  Hence, the brightness of the light must decrease 

with distance from the source.  Since the area of a sphere depends on the square of its radius, the 

brightness must be inversely proportional to the square of the distance (which is the radius of a 

sphere) from the light source. In other words, the brightness of light obeys and inverse square law, 

just like gravity doe  

    Hence, very distant stars are going to appear faint or have large magnitudes while nearby stars are 

going to appear to be very bright or have small magnitudes. So apparent magnitudes cannot indicate 

which stars are intrinsically bright and which are intrinsically faint.  To determine this, we must 

eliminate the distance factor when assigning magnitudes.  The inverse-square law makes it possible 

to calculate what magnitude would be seen at any distance, if we measure the magnitude for a known 

distance. 

11- 5.    Absolute magnitude, M.  

      Absolute magnitude is also an expression of intrinsic brightness.  It is the magnitude of an 

object when seen from a distance of 10 parsecs. However, the absolute magnitude scale is a 

relative scale of absolute or intrinsic brightness.   Astronomers use absolute magnitudes to express 

which stars are truly bright and which are truly faint, because distance is no longer a variable.  

 The absolute magnitude scale works the same way the apparent magnitude scale works. For 

example, a star that is 100 times more luminous than the Sun would have an absolute magnitude  

that is 5 magnitudes brighter than the Sun's absolute magnitude (remember, a step of 5 mags. is  

defined to correspond to a brightness ratio of exactly 100).  Since the Sun's absolute magnitude is  

approximately +5 (4.79 to be exact), a star with a luminosity 100 times the Sun's would have a value  

of M* = 0.  

 Absolute magnitude, M, is a number that can only be computed, not measured. To compute M 

for a star we must first:  

   1. Measure the apparent magnitude of the star.  

   2. Determine the distance of the star by measuring its parallax..  

   3. Use the inverse-square law to compute the magnitude the star would have if seen from 10 

 parsecs. 



     Now, the distance of a star may be calculated using trigonometry, if a very small angle called 

the parallax of the star can be measured. Knowing the distance and apparent magnitude of a star, one 

can use the inverse square law to compute what its magnitude would be at 10 pc using the inverse 

square law for the diminution of brightness.  Let BM be the brightness of an object when observed 

from a distance of 10pc and bm the brightness of the same object when observed from a distance d.  

Then the inverse square law gives: 
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But according to the definition of the magnitude scale,  

 

bm /bM = 2.512
(M-m))  

= [10
0.4

]
 (M-m)

 

 

So,  

 

(10/d)
2
 = [10

0.4
]

 (M-m)
 

Take the log of both sides: 

 

2(log 10 - log d) = (M-m) (0.4) log 10 

 

(2-2log d)/0.4 = M-m 

 

5-5log d = M -m 

Solve for M: 

 

M = m + 5 - 5log (d)                                 (11-5.2) 

 
Here d must be expressed in parsecs.  Or, since d=1/, 

 

M = m + 5 + 5log (),                                   (11-5.3) 

 
where  is the parallax in arcseconds.  However, this can be done only for about 2,000 stars, all of 

which are within 100 pc of the Sun.  It has been found that the absolute magnitudes of stars range 

from -10 (the intrinsically brightest stars) down to +18. The Sun's absolute visual magnitude is +4.79, 

making it an average star when compared with the other stars.   

 Example:  The star Rigel has an apparent magnitude that has been measured to be 0.18 and it is 

known that the star also has an absolute magnitude that is -6.60.  What is the distance of the star in 

parsecs.   

 First calculate the distance modulus of the star, m-M = 0.18-(-6.60) = 6.78.  When the distance 

modulus is greater than  0.00, the star has a distance greater than 10 parsecs.  If the distance modulus 

is negative, that is, less than 0.00, the star is closer than 10 parsecs.  If the distance modulus is exactly 

0.00, then m=M, and the star has a distance of 10 parsecs. 

Now [(m-M)/5] +1.00 = [(6.78)/5] +1.00 = 1.37 + 1.00 = 2.37. 



Hence the distance of  Rigel is 10
2.37

 = 234 parsecs.   

11-6. Color Magnitudes  

     The flux emanating from the surface of an incandescent body, such as a star, has a wavelength 

dependence given by Planck’s Law.  This is shown in the diagram below for a surface temperature of 

10,000 K.    Therefore, one needs to specify the wavelength interval or bandpass over which the 

measurement of a magnitude has been made. The human eye detects what is called "visible" light or 

electromagnetic radiation from a wavelength of about 400 nanometers to 700 nm (4000 to 7000 Å).  

Hence, magnitudes measured by the eye are called "visual" magnitudes."   On may construct a 

photometer to measure the brightness over any wavelength interval or bandpass desired.  

 Magnitudes that are measured for a certain defined bandpass are called color magnitudes. One 

of the standard color magnitude systems used by astronomers is the Johnson and Morgan U, B, V, R, 

I system. See the schematic below. The bandwidths for each of these color magnitudes is several 

decades of nanometers in the ultraviolet, blue, yellow-green, red, and near infrared portions of the 

EM spectrum.  Note that for 10,000 K, a star is brighter in blue (smaller magnitude) than it is in the 

visible or red bandpasses. 

 

  

   

 

 

 

 

 

 

 Measured values of the color magnitudes are also designated as m with a subscript identifying 

the bandpass, e. g., mV or mB. 

 

11-7.  Color Index:  

 A color index is the difference of two color magnitudes, e.g., B-V, U-B, etc. A color index 



that is used very often is the B-V index.  The diagram below illustrates the spectral distributions for 

two stars with different temperatures.  The B-V color index for star A is 9.1 - 8.5 = +0.6, whereas the 

B-V color index for star B is 4.4 - 4.6 = - 0.2.  Now star B is the hotter star with a surface temperature 

of 20,000 K and star A is cooler with a surface temperature of 5500 K.  Notice that the hotter star has 

a negative color index while the cooler star has a positive color index.  That is, hot stars tend to be 

brighter in the blue part of the spectrum that in the visual or red part of the spectrum.  For such stars, 

B < V numerically. Cooler stars are brighter in the visual bandpass than in the blue bandpass so V < 

B numerically.  Hence, color indices convey useful information about a star's spectrum and 

temperature.  Values of B-V have been calibrated to directly indicate the temperature of a star.  An 

abbreviated table is given below.   

 

 

 

11-8.  Bolometric Magnitudes 

 
 A bolometric magnitude, mbol (or Mbol), is the magnitude found by measuring the observed 

flux over the entire EM spectrum.  Needless to say, this is very difficult to do.  Bolometric 

magnitudes are always brighter than magnitudes measured for some bandpass (smaller in value). For 

example MV for the Sun is +4.79, whereas its absolute bolometric magnitude is Mbol = +4.72.  

 As the radiation from a body travels outwards from the surface, it must pass through 

successive concentric spheres of larger and larger surface area.  Using the conservation of energy for 

the luminosity of a star we have 

L = 4R
2
T

4 
 = 4r

2 
∫ F(r)d4r

2
 Fbol(r),            (11-8.1) 

where Fbol(r) is the total integrated (over all wavelengths) or bolometric flux arriving on a sphere at a 

distance r from the star.  Therefore,   

Fbol(r) = L4r
2
.                    (11-8.2) 

 Both absolute bolometric magnitude and luminosity are measures or expressions of  intrinsic 

brightness.  Absolute magnitude does so on a relative scale (dimensionless), while luminosity is on an 

absolute scale (watts). The relationship between the two is 



 L L
bolB – MbolA)

                     (11-8.3) 

or , 

    bolB – MbolA) = 2.5log(L L 

                         

11-9.  Bolometric Corrections 

 The bolometric correction is defined as 

  

       BC = Mbol - MV                    (11-9.1) 

  

For example, the bolometric correction for the Sun is 4.72 - 4.79 = – 0.07.  Bolometric corrections 

are always negative and are usually computed from theory. They may be found tabulated in various 

sources, even on line.  

 

11-10.  Distance Modulus:  
 
 Distance modulus is an indicator of the distance of an object expressed in terms of its absolute 

and apparent magnitudes. More specifically, distance modulus is defined as m-M.  If the distance 

modulus is 0, the object is 10 parsecs distant.  If m-M is less than zero or negative, this means the 

object is closer than 10 parsecs. If m-M is positive, then the object is farther than 10 parsecs. Distance 

modulus is actually a logarithmic index of distance.    

 

 

11-11.  Selective Absorption and Reddening 
 

 In addition to distance affecting the apparent brightness of an object, further dimming is 

caused by absorption within the interstellar medium.  In general, the more distant the object, the 

greater the amount of absorption, but it also depends on the line of sight to the object through the 

galaxy.  The absorption is also wavelength dependent, with the result that an object is reddened, just 

as the Sun and Moon are when seen towards the horizon.   The result is that the measured color 

index, (B-V)m, is increased relative to it intrinsic value, (B-V)o or (B-V)i.  Intrinsic values may be 

computed from the black body theory of radiation and may be found tabulated for a given 

temperature.  Let mV be the diminution of the star in magnitudes and EB-V, the color excess, defined 

as 

 

EB-V  = (B-V)m - (B-V)o                               (11-11.1) 

 

A general rule that is sometimes used is 

 

mV = 3EBV                           (11-11.2) 

 



 Hence, when computing the distance of a star, one must take into account the interstellar absorption.  

This requires knowing the spectral type or temperature of the star in order to look up the intrinsic 

value of the color index, (B-V)o, and the determination of B and V in order to find (B – V)m. The 

value of mV  is always a positive number that must be subtracted from the observed value of V or 

mv 

 

 
 

 
  
 


