Virtual Astronomy Lab Ex. 27

Spectroscopic Parallax

Do any 10 stars. The star numbers change if you close the program and open it later.

Star #	m	WL _{max} (nm)	Т(К)	Μ	HD(pc)

Wien's Law:

$$T(K) = 2,898,000 / WL_{max}$$

where the peak wavelength, WL_{max} , is measured in nanometers (nm), and the temperature in Kelvin (K).

To find distance, use $d = 10^x$, where x = [(m-M)/5] + 1. Do not use the chart given in the Exercise.