
Techniques for Modeling Expression in
Plucked-Guitar Tones

Raymond Migneco and Youngmoo E. Kim
Music and Entertainment Technology Lab (MET-lab)

Electrical and Computer Engineering, Drexel University
{rmigneco, ykim}@drexel.edu

Abstract—Source-filter models are a well-established technique
for the analysis and synthesis of many acoustic signals, including
musical instruments. When applied to the task of modeling
plucked-string instruments, these models provide a clear analog
to the physical phenomena incurred with exciting the string; that
is, an impulsive-like force from the performer excites the resonant
behavior of the string. In the case of the guitar, many techniques
are available for estimating and calibrating the resonant filter
properties of the string, but little research has been invested in
the analysis of the driving source signals, which are responsible
for reproducing unique timbres associated with the performer’s
articulation.

In this work, we present techniques for the analysis and
synthesis of plucked guitar signals with emphasis on capturing
the expressive attributes of performance. This includes novel ap-
proaches for modeling the resonant string behavior and excitation
signals of a source-filter model for plucked-guitar tones.

I. INTRODUCTION

In recent years, advances in computing have rendered mo-
bile devices and gesture recognition systems cogent platforms
for music performance and creation. Touch- and/or gesture-
based technologies (e.g. iPad, Kinect) enable entirely new
ways of interacting with music. Despite these advances, music
creation tools based on these technologies are often use
sample-based synthesizers, which limits the expressive capa-
bilities of these systems. Computational models (e.g. physical,
source-filter) are capable of simulating the physical charac-
teristics of instruments for expressive control and arbitrary
synthesis, especially for the guitar. However, it is unclear
how exactly to quantify the nuances of particular playing
styles using these models. For music information retrieval
applications, such as content-based analysis of performance,
computational models of expression are desirable.

This paper presents techniques for the analysis and synthe-
sis of plucked-guitar tones with attention to the expressive
attributes of recorded performance. The analysis/synthesis
techniques are based on a physically inspired source-filter
model, which is discussed in Section II and techniques for
calibrating this model are overviewed in Section III. In Section
IV, we present a data-driven approach for modeling guitar
excitation signals using components analysis. Finally, we
present our conclusions in Section V. This work shows that
the component analysis techniques applied to guitar recordings
can be used to build computational models describing the
expressive attributes of the recorded performance.

II. PHYSICALLY INSPIRED MODELING

Modeling and synthesis of plucked-guitar tones is often
based on digital waveguide (DWG) modeling principles, which
digitally implement the d’Alembert solution for traveling
waves on a lossy string [1]. The DWG simulates the left- and
right-traveling waves occurring after the string is displaced
by spatially sampling their time-varying amplitudes along the
string’s length. It was shown that the DWG model could be
reduced to a source-filter interaction as shown in Figure 1 [2].

The lower block, S(z), of Figure 1 is often referred to as
the single delay-loop (SDL) and its purpose is to specify the
pitch f0 and model the resonant behavior of the string. The
bulk delay filter z−D determines f0 by the ratio fs/D where
fs is the audio sampling frequency. The fractional delay filter
HF (z) is used to provide the non-integer delay when required.
This creates a resonant filter structure for the fundamental
frequency and its harmonics. Since real strings decay with
frequency-dependent characteristics, Hl(z) is used to model
the decay rates of the harmonics.

The upper block of Figure 1, C(z), is a feedforward comb-
filter that incorporates the effect of the performer’s plucking
point position along the string. Since the SDL lacks the
bi-directional characteristics of the DWG, C(z) is required
to simulate the boundary reflection when a traveling wave
encounters a rigid termination (such as the guitar’s nut or
bridge). The delay in C(z) is determined by the product βD
where β is a fraction in the range (0, 1) corresponding to the
relative plucking point location on the string.

An advantage of using the SDL is that it permits model-
based analysis of recorded data. This is key in extracting the
expressive attributes of performance without having knowl-
edge of the exact physical conditions of the performance.

III. MODEL PARAMETER ESTIMATION

Existing techniques for estimating the string model typically
involve frequency-domain techniques to determine how the
string decays over time. The first step in this process involves
determining the fundamental frequency of the string either by
autocorrelation function or spectral peak-picking techniques.
The short-time Fourier Transform (STFT) is then computed
to track how the harmonically-related partials change over
time. Using this information, the decay rates for each partial
are computed and filter design techniques are used to find
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Fig. 1. Source-filter model for plucked-guitar synthesis. C(z) simulates the
effect of the player’s plucking position along the string. S(z) models the
string’s resonant behavior and decay characteristics.

a filter with a magnitude response that best matches these
specifications [2], [3].

A. Joint Estimation
Rather than employ frequency-based methods to estimate

the loop filter of the SDL model, we proposed a novel, time-
domain approach for jointly estimating the source and filter
parameters from a recorded performance. The SDL output is
described as a convolution between the excitation signal and
the filter S(z)

Y (z) = Pb(z)S(z). (1)

Pb(z) is the excitation signal taken at the output of the comb
filter C(z) in Figure 1 and contains a bias from the performer’s
plucking point position (removing this bias is discussed in
Section IV).

The parameters for the excitation and filter models can be
estimated by minimizing an error term

e(n) = pb(n)− p̂b(n), (2)

where p̂b(n) is the excitation obtained by filtering the recorded
tone with an inverse string model such that P̂b(z) =
Y (z)S−1(z). pb(n) is a parametric model of the excitation we
wish to estimate. In [4], we show that piecewise polynomial
functions are suitable for modeling the excitation, which
consists of an incident and reflected pulse detected the guitar’s
pickup.

By using an all-pole filter approximation of S(z), each
output sample in y(n) is computed by summing the current
excitation sample pb(n) and a linear combination of previous
output samples y(n−D), y(n−(D+1)), . . . , y(n−(D+N)).
This allows us to rewrite the minimization in Equation 2 as

e = Hx− y, (3)

where H contains past output samples of y(n) and the time
indices for each segment of the excitation signal while x
contains the unknown source and filter coefficients. By taking
the L2 norm of Equation 3, a convex optimization problem
is formed and x can be solved using quadratic programming
techniques. Additional implementation details and evaluation
are presented in [4].

IV. EXCITATION MODELING

During performance, guitarists convey expression by vary-
ing their string articulation in a number of ways. This includes
changing the plectrum for displacing the string and the relative
dynamics, or strength, used to excite the string. The excitation
signals corresponding to these articulations can be recovered
from recorded performance by inverse filtering with the SDL
model, but it is unclear how these signals should be param-
eterized to quantify their expressive attributes or for use in
expressive synthesis systems. This section overviews a data-
driven approach for solving these problems using component
analysis techniques.

A. Existing Methods for Excitation Extraction and Modeling

There are several approaches used in the literature for de-
termining the excitation signal for the model shown in Figure
1. One method includes applying non-linear processing to
spectrally flatten the recorded tone and use the resulting signal
as the source while preserving the signal’s phase information
[5], [6]. Another technique involves inverse filtering a recorded
guitar tone with a properly calibrated string-model [7], [8].
When inverse filtering is used, the string model cancels out
the tone’s harmonic components related to the fundamental
frequency leaving behind a residual that contains the excitation
in the first few milliseconds. In [9], these residuals are pro-
cessed with “pluck-shaping” filters to simulate the performer’s
articulation dynamics and comb filters to model the reflection.

B. Data Collection and Pre-processing

The analysis of expressive performance for this study con-
sists of particular articulations where the performer varied the
dynamics of the articulation and the plucking device. At each
fret position, the guitarist performed a specific articulation
several times for consistency using either a pick or his finger
to excite the string. The neighboring strings are muted so that
only the excited string is recorded. Articulations are identified
by their dynamic level, which consisted of piano (soft), mezzo-
forte (medium-loud) and forte (loud). Approximately 1000
recordings were produced using the first five fretting positions
from each of the guitar’s 6 strings. A bridge-mounted piezo-
electric pickup is used to record the plucked signals because
it has a wider frequency response than magnetic pickups and
allows the guitarist’s plucking point location to be identified
using time-domain techniques [10].

The excitation signals are obtained by calibrating an SDL
model for each recorded performance and inverse filtering
with the associated model. Using the plucking point estimation
technique proposed by [10], each excitation signal is “equal-
ized” to remove the comb filter effect which yields a signal
closer to a pure impulse.

C. Principal Components Analysis

In previous work, we demonstrated the application of prin-
cipal components analysis (PCA) to a corpus of excitation
signals in order to derive a codebook of basis vectors that
can be used to synthesize a multitude of excitation signals



[11]. Here, we briefly overview the application of PCA to
the data and discuss how it is used to derive a feature-based
representation of the signals in the corpus.

By aligning the excitation signals from our data corpus so
that the primary pulse peaks overlap (see Figure 2), we form
a data matrix

P =

 | | |
p1 p2 . . . pN

| | |

T

(4)

where each p1 is a M -length column vector representing an
excitation pulse. The principal components of P are a set of
basis vectors and scores (weights) that can reconstruct the data:

P− u = WVT . (5)

In Equation 5, u is the mean of P, V contains the basis
vectors of P along its columns and W contains the scores
(or weightings) to reconstruct each excitation pulse. Several
techniques can be used to compute the principal components
of P, including the well-known covariance method [12], [13].

Figure 2c plots the first few principal components along
with the mean of our data set. The mean vector captures the
general impulsive shape of the data, while the components
shown serve to widen or narrow the pulse depending on the
sign of the associated score value. This relates to the physi-
cality of the string’s shape during its initial displacement and
finger articulations tend to produce an excitation pulse with
greater width than articulations made with a pick. Additional
principal components not shown in Figure 2c contribute the
noise-like characteristics inherent to the string articulation.

We obtain a feature representation of the excitation signals
using the principal components extracted from the data set.
By projecting the mean-centered data onto the basis vectors,
the principal component scores may be computed as

W = (P− u)V. (6)

Equation 6 defines an orthogonal linear transformation of the
data into a new coordinate system defined by the basis vectors.
The scores indicate how much each basis function is weighted
when reconstructing the signal. Figure 3a displays the projec-
tion of the data onto the first two principal components, which
explain the most variance in the data set. We observe that the
first principal axis relates to the articulation type (i.e. finger
and pick) and strength (e.g. forte, piano).

D. Nonlinear PCA

Figure 3a shows that there is a nonlinear arrangement of
the data when projected onto the principal components. To
better relate the expressive attributes of our data set to the
component space, we apply nonlinear PCA via autoassociative
neural networks (ANN) to the data set of excitation signals.

ANN provides a multi-layer approach for mapping high
dimensional data into a lower dimensional space. Features
at the input layer of the ANN are transformed by sigmoidal
functions in a mapping layer into a lower dimensionality
defined by the bottleneck layer [14]. Unlike other nonlinear
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Fig. 2. Example excitation pulses related to articulations produced using
(a) a pick and (b) a finger. Principal components extracted from the data are
shown in (c) and are offset to highlight their relationship to the pulses in (a)
and (b).

dimensionality reduction techniques, this process is reversible
so the original feature space can be achieved from the bottle-
neck layer via a de-mapping process. This aspect of ANN’s
is particularly attractive for our application since we seek a
reduced dimensionality space that can quantify the expressive
attributes of the data set and be used as a controller for
expressive synthesis.

Using the linear PCA scores obtained with Equation 6 as
network inputs, we trained an ANN using the Nonlinear PCA
MATLAB Toolbox [15]. Empirically, we found that using 25
scores at the input layer of the network was sufficient in terms
of adequately describing the data set. As discussed in [11], 25
basis functions explain > 95% of the variance in the data set
and leads to good re-synthesis. Two dimensions were chosen
at the bottleneck layer for multiple degrees of freedom, which
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Fig. 3. (a) Guitar data projected along first two linear component vectors.
(b) Projection of data into reduced dimensional space defined by the autoas-
sociative neural network.

could be used to synthesize excitation pulses in an expressive
interface.

Figure 3b shows the projection of the data into the reduced
dimensionality coordinate space defined by the bottleneck
layer of the ANN. Unlike the linear projection shown in Figure
3 (b), the data in the reduced space is clearly distributed
around two linear axes. The z1 axis pertains to articulations
produced using either a finger or pick where points sampled
in the space z1 < 0 describe finger articulations and points
sampled for z1 > 0 pertain to pick articulations. The finger
articulations feature a wider excitation pulse in contrast to the
pick, where the pulse is generally more narrow and impulsive.
In both cases, moving from left to right increases the relative
dynamics. The component defined by the z2 axis relates to
the contact time of the articulation. As z2 is increased, the
excitation pulse grows wider for both articulation types. Our
informal listening tests confirm that the dimensions of this
space correlate with the perceptual qualities of our data corpus
when the excitation signals sampled from the space are used
to synthesize guitar tones.

V. CONCLUSION

We have presented techniques for the analysis and synthesis
of plucked guitar tones with a focus on quantifying the
expressive attributes of recorded performance. By calibrating
a source-filter model, we show the excitation signals cor-
responding to particular string articulations can be derived
directly from recordings. Using linear principal components

analysis, these signals are characterized by linear basis vectors
which relate to the expressive parameters of the data set (i.e.
dynamics, plucking device). Finally, nonlinear components
analysis was used to achieve a low dimensional representation
that compactly describes the attributes of our data set. Future
directions for this research include acquisition of additional
performance data from a variety of guitarists to expand our
computational model for guitar articulations.
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