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Abstract—Creativity is an important aspect of humanity, but is
shrouded in mystery and mysticism. Only recently have scientific
approaches in AI focused on the study of creativity per se, as
opposed to simpler problem solving [1]. I propose a model of
creativity that merges Minsky’s Society of Mind [2] with Baars’
Global Workspace Theory [3]. In particular, the model simulates
the experience of spontaneous inspiration.

I. INTRODUCTION

I propose a cognitive mechanism for regulating non-
conscious attention and attentive access to non-conscious in-
formation in a Choral Society of Mind [4], [2] formed around
a Global Workspace [3]. It involves an anticipatory approach
to cognitive process that enables new, useful distinctions to be
made between different classes of cognitive information, that
allow specification of a hypothetical mechanism to account for
spontaneous non-conscious creativity, or “inspiration”. I begin
by noting the value of music in the study of creativity, and
clarifying what kind of creativity I aim to explicate. Next, I
present background: the current work draws together several
disparate areas of research, on perception, consciousness, and
computational creativity. In the central section, I analyse the
affordances of the proposed perception simulation with respect
to information perceived by a listener, and show how they
categorise various aspects of information salience. Finally, I
suggest how the whole may regulate attention.

II. MUSIC AND THE STUDY OF CREATIVE COGNITION

My interest is in musical perception and creativity because
music holds a unique position among creative practice: 1) it
cannot be stopped and looked at in detail, so a) is heavily
reliant on memory, and b) is, therefore, entirely subjective;
and 2) it has no denotation, beyond self-reference and ono-
matopoeia. So music is a self-contained cognitive construct,
and can be studied as such. This is not to deny musical em-
bodiment; embodiment is in close relation with mind. Music is
universally human, without apparent bio-evolutionary benefit
[5]: studying it is likely to elucidate the human condition.

III. TWO KINDS OF CREATIVITY

I propose an account of the creativity sometimes called
“inspiration”, that happens spontaneously, without conscious
reasoning. It occurs in everyday language [6], and in Mozart’s

composition, according to his introspection [7]. It differs from
creativity performed to order, e.g., when a student harmonises
a given melody, which is conscious, planned, problem-solving.
These two end-points form a spectrum between conscious cre-
ation in the planning of a formalist composer, the spontaneous
but partly planned cooperation of the jazz trio, and the sponta-
neous whistling in the street of a postman. Non-polar positions
on this spectrum entail a combination: there is no smooth
transition between the extremes, but a mixture containing both
explicit problem-solving and implicit inspiration.

IV. BACKGROUND: IDEAS BEHIND THE PROPOSED MODEL

The Choral Society of Mind: I present a model of
musical creativity that is like an improvising chorus, “singing”
fragmentary ideas, with singers paying varying attention to
each other at different times. Singers pick up and develop lines,
or sing in unison to attract other singers to music they select.
This is built over a model of musical listening that matches
Minsky’s “society of mind” agent model [2]. Minsky’s model
has agents with particular capabilities, which are learned,
and so does this one. Some of the agents are specialised to
learning and predicting sequences of percepts in time. The
motivation for this is evolutionary: organisms that can estimate
the immediate future have better survival chances than those
which cannot. Similarly, organisms that are sensitive to change
[4], and that can detect new differences in their environment
are more likely to survive than those that cannot.

Statistical modelling of (musical) expectation: Animal
learning includes more than static association [8]. An organism
needs a mechanism for avoiding danger, in terms of sequential
data; e.g., if I eat a plant, and I later get sick, I learn the
sequential association and back-chain on the contrapositive:
if I do not eat the plant, I will not be sick. But this simple
mechanism is not subtle enough [9]: evolution entails that an
organism breed, but if it dies, it neither learns, nor transmits its
learning capacity. An effective strategy lies at the meta-level:
if an organism knows that it is in unpredictable circumstances,
it can be cautious, prepare for flight, and attend more to its
surroundings. Huron [9] argues that this process is exapted
into the aesthetics of music; some empirical work supports
the claim [10]. Self-evidently, there is a mechanism to allow
uncertainty to affect behaviour in humans and other animals,



that precedes explicit reasoning: we feel nervous in uncertain
situations, and the feeling serves to heighten our attention to
appropriate sensory inputs and to prepare for flight.

Learning must include generalisation: tension alone cannot
lead to fear at the bared fangs of a previously-unknown animal.
This accords with proposals [11] that perceptual learning sys-
tems evolved to detect and quantify similarities and differences
between perceived entities in the world, placing new observa-
tions appropriately between previously-experienced referents.

The modelling proposed here is statistical [12], [13], [14],
but I do not claim that the mind/brain works exactly thus;
rather, this abstract level provides a strong theoretical frame-
work with appropriate mathematical background, in informa-
tion theory [15]. Specifically, Pearce [13] has built a model
of melodic listening that has been shown to model human
musical expectations very well [16]. It can be used, via naı̈ve
sampling, to create minimally acceptable music [17]. A key
feature of the model is entropic weighting between models
of multiple musical features [18], where predictions carrying
more information are favoured over ones carrying less. The
model reliably predicts neurophysicoloical effects which are
consciously reportable [19]. Information content estimates
from the model predict subjective musical salience [10].

The current model envisages very many such agents, con-
tributing to and sampling over a highly-structured, multi-
dimensional, learned model of the agents’ musical culture.
The outputs of sampling constitute the new ideas that arise
from “inspiration”. This begs the question of how the agents
interact, and how their outputs are selected for presentation to
consciousness, which is the topic of the next section.

Global Workspace Theory: Bernard Baars [3] introduces
a theory of consciousness called Global Workspace Theory
(GWT). There is not space here to describe this wide-ranging
theory in full, so I summarise the relevant important points.
The theory posits a framework within which consciousness
can take place, based around a multi-agent architecture [2]
communicating via something like an AI blackboard system
[20], but with particular constraints, which I outline below.

Baars models the non-conscious mind as a collection of
expert generators, like Minsky’s agents, performing tasks by
applying algorithms to data in massive-parallel, and competing
for access to a Global Workspace via which (and only via
which) information is exchanged—this aspect is different
from the Society of Mind. Information must cross a notional
threshold of importance before it is allowed access to the
Global Workspace. The Workspace is always visible to all
generators, and contains the information of which the organism
is conscious at any given time. However, it is capable of
containing only one “thing” at a time, though what that
“thing” might be is variable. The Global Workspace is highly
contextualised; meaning contained therein is context-sensitive
and structured; and such contexts can contain goals, desires,
etc. Aside from further discussion of the “threshold” idea,
below, this is all that is needed to understand the purpose
of the competition mechanism proposed here. Baars mentions
the possibility of creativity within this framework in pass-

ing, effectively equating entry of a generator’s output into
consciousness with the “Aha!” moment [21]. However, he
does not develop this idea, beyond noting that a process of
refinement may be implemented as cycling of information into
the Workspace and out again. To my knowledge, it has not
been addressed elsewhere in the related literature.

Baars proposes that information integration may take place
in stages, via what one might (but he does not) call local
workspaces, integrating information step by step in a sequence,
rather than all in one go as it arrives in the Global Workspace.
This information integration approach has been extended by
Tononi and Edelman [22], who propose information-theoretic
measures of information integration as a measure of conscious-
ness of an information-processing mechanism. Baars has em-
braced the information-theoretic stance, too, and these authors
have jointly proposed that it is time to begin implementing a
conscious machine based on their ideas [23].

The Threshold Paradox: Baars [3, pp. 98–99] addresses
what he acknowledges is a problem for his theory. He posits a
threshold for input access to the Global Workspace, crossing
of which is thought of in terms of recruiting sufficient gen-
erators to produce information that is somehow coordinated,
or synchronised between them: it must be (metaphorically)
“loud” enough to be “audible” in the Workspace. However,
in terms of the Global Workspace alone, there is no means of
doing this: generators can only be synchronised (whatever that
means) via the Global Workspace, and so they are faced with
the beginning artist’s dilemma: you must be famous to show
your work, but you must show your work to become famous.
Baars presents two possible solutions to the paradox, but both
are presented somewhat half-heartedly, leaving a gap in the
theory. I will propose a mechanism to fill this gap, below.

Models of Creativity: Creativity studies have considered
numerous approaches, sociological, affective and cognitive
[21], [24], [25], [26], [27], [28]. There have also been at-
tempts to formalise [29], [30] and quantify [31] creativity. As
mentioned above, Baars [3, §6.2.4] quoting Mozart, outlines
a high-level creative loop in GWT. The mechanism described
here is a substantially more detailed model, than any of the
above, to the degree that it can be implemented as a computer
program. As already mentioned, it addresses the Threshold
Paradox of GWT [3], and forms the boundary between the in-
cubation and insight phases of Wallas’ model [21]. Guilford’s
notions of divergent vs. convergent production are implicit,
arising from the probabilistic nature of the model, though not
in phases as he suggests [25]. The flow model of creativity
[26] seems to relate in that it proposes states that create the
conditions necessary for the model to function. Boden’s [27],
[28] general framework accommodates the proposal, also.

V. A MODEL OF SPONTANEOUS MUSICAL CREATIVITY

I propose a model consisting of multiple statistical sampling
agents, operating over a learned perceptual model of music
[13]. At each point in listening, agents compute a) the likeli-
hood of each note heard, in terms of the preceding sequence
and the learned model; b) the likelihood of each possible next



note; and c) the entropy [15], [32] of the distribution resulting
from b. From a and b, we calculate the information content
[32] of the respective notes.

The model of creativity reverses this. The central idea
is that agent-generators continually generate fragments of
musical information from their learned models, anticipating
incoming stimuli (musical or otherwise). This is motivated by
the evolutionary need to anticipate the world: an organism
that anticipates steals the march on one that cannot. So my
musical creativity model is a specialisation of a general sur-
vival mechanism. Note that the agent-generators’ models are
constructed so that they can generate structures not previously
encountered, by various kinds of generalisation [11], [13], and
thus it is possible to infer futures from novel encounters.

Next, we propose that the Global Workspace is sensitive
to information-theoretic qualities [15] of the ideas being
generated. MacKay [32] distinguishes between information
content or unexpectedness, h, an estimate of the number of
bits required to describe an event, e, given a context, c:

h(e | c) = − log2 p(e | c),

and entropy, H , which is defined as an estimate of the
uncertainty inherent in the distribution of the set of events
E from which e is selected, given the context, c:

H(c) = −
∑
e∈E

p(e | c)h(e | c) = −
∑
e∈E

p(e | c) log2 p(e | c).

H is maximised when all outcomes are equally likely, and zero
when a single outcome is certain. Both of these quantities are
useful in the model, at different times.

First, consider hn, the unexpectedness of a partial model
of actual on-going experience in a particular state, n. If the
experience is likely (in particular, if it is readily predictable
from what has gone before), it is not unexpected, so hn is
low; if it is unlikely, it is unexpected, so hn is high. Unlikely
predictions are infrequent in the Workspace, and so have low
volume, but high hn draws attention. I call this the recognition-
h case: it explains why unexpected things are noticed.

Now, consider, hn+1, the unexpectedness of a predicted
situation. It is maximally unlikely that a prediction will be
made including a percept that has not been encountered before,
and, as above, we would therefore expect hn+1 to be very
high. However, if such a prediction is made, we would not
want it to be too loud. Excess of such predictions, or even
repeated occurrence of a single one, in general, would lead
to a state of constant anxiety. Of course, in a simplistic
frequentist account, predictions introducing novel percepts or
concepts cannot arise; this is why I include generalisation
and/or interpolation in the theory, as above. I call this the
prediction-h case. It may explain why surprising predictions
are more likely to draw attention than unsurprising ones.

Over-active prediction-h is mitigated by the mechanism
above, where prediction is probabilistic and additive across
predictors. There are two opposing forces here, one changing
inversely relative to the other; because they are co-occurrent,
their effects should multiply. Therefore, the overall outcome
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Fig. 1. Illustration of the interaction between likelihood and unexpectedness.
The overall likelihood (solid) is formed by the multiplication of two monotonic
functions: the unexpectedness of a generated item (dashed) and the number
of generators likely to agree on it, according to its likelihood (dotted).

audible in the global workspace can be estimated by multi-
plying the probability, p, of an event (estimating the likely
number of generators predicting it) by h (estimating the
volume at which they are predicting). The resulting likelihood
is illustrated by Figure 1. This creates a bias away from
predictions which are either very likely or very unexpected,
reducing the power of the very unlikely or the very obvious
to attract attention. This explains why unlikely possibilities do
not overwhelm the acting organism with choice, and accounts
for Wundt’s hedonic curve in creative preference [33].

Note the difference between recognition-h and prediction-
h in the context of the Global Workspace. Agent-generators
may generate structures of either kind, and the two compete for
attention. Thus, clear and present danger or benefit outweighs
predicted likelihoods, because the distribution of potential
predictions is over a much wider range of possibilities than that
over actual perceptions, and therefore, comparatively, proba-
bility mass is spread more thinly. Conversely, for example,
likely but unexpected predicted benefits can outweigh less
seriously dangerous present circumstances—thus, prioritising
an unusual positive opportunity emerges mechanistically.

H , the expected value of the information content of a
distribution, is different from h, which deals with specific
situations. It is characterised as the uncertainty inherent in
a distribution [32]. Unlike h, H really only has meaning in
the predictive context: once one knows which possibility of
a range is the right one, only information content is really
relevant. However, a certain predicted outcome is more useful
than one which is uncertain: H measures this difference.

I propose, therefore, that, in the predictive generators, higher
H also predicts lower volume, so that less certain generated
outputs are de-emphasised. This, I call prediction-H . It may
explain how it is possible to feel certain about intuitions (as
opposed to be convinced by reasoned argument). It prevents
the Global Workspace from being flooded with unsupported
predictions, allowing secure predictions to shine through. A
particularly interesting point is this: an unlikely prediction,
with sufficient prediction-h to be audible, in the absence of



other explanations, will have low prediction-H , and so will
not be suppressed by this final mechanism.

No straightforward diagram (cf. Fig. 1) can be drawn of
the effect of prediction-H on the overall likelihood of a
generator taking over the Global Workspace, because the
numbers depend heavily on the multidimensional distributions
from which the various Hs are calculated. However, it is
possible to specify a volume value for each idea, V , which
is estimated by the following, for either kind of h, above:

V =
p× h

H
.

V can be used to adjudicate between candidate ideas: the
highest one at a time has access to the Global Workspace.

VI. CONCLUSION

I have outlined a simple mechanism by which statistically
likely and information-theoretically rich novel structures can
emerge from a multi-agent system furnished with high-quality
models of a domain of knowledge. This mechanism for
choosing access to consciousness simulates inspiration by
managing admission of (partial) ideas to conscious awareness,
and drawing attention to them. I should note that it is possible
that such a mechanism is one of Baars’ own proposals;
however, if so, it is not clearly specified as such.

Note that this mechanism can apply to any statistical model
available to the generators, so it need not be restricted to
music (as it is in the system components summarised in the
next section). In principle, the same idea can work with any
model from which statistical likelihoods can be computed.
This means, for example, that it can account for the generation
of sentences, and therefore possibly internal speech. If internal
speech is equated with essential thought, as commonly, then
the current approach can account for general creative thought
and for the emergence of particular thoughts into conscious-
ness as intuition. Prediction-H can account for the feeling of
certainty associated with thoughts and intuitions.

As for the Threshold Paradox: it is not in the threshold, but
in the formulation of the Global Workspace as requiring one.
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