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Abstract

In this paper we give a brief review of the astrophysics of active galactic nuclei (AGN).
After a general introduction motivating the study of AGNs, we discuss our present under-
standing of the inner workings of the central engines, most likely accreting black holes with
masses between 106 and 1010M�. We highlight recent results concerning the jets (collimated
outflows) of AGNs derived from X-ray observations (Chandra) of kpc-scale jets and γ-ray ob-
servations of AGNs (Fermi, Cherenkov telescopes) with jets closely aligned with the lines of
sight (blazars), and discuss the interpretation of these observations. Subsequently, we summa-
rize our knowledge about the cosmic history of AGN formation and evolution. We conclude
with a description of upcoming observational opportunities.

1 Motivation

Active galactic nuclei (AGNs) are galaxies that harbor supermassive black holes (SMBHs) of a few
million to a few billion solar masses. Whereas it seems likely that all galaxies contain one or more
supermassive black holes [1, 2], the black holes in AGNs give rise to spectacular observational
consequences because they accrete matter and convert the gravitational energy of the accreted mat-
ter (and possibly also the rotational energy of the black hole) into mechanical and electromagnetic
energy. A few of the most salient motivations for the study of AGNs are:

AGN Taxonomy: AGNs are among the brightest extragalactic sources and account for a large
fraction of the electromagnetic energy output of the Universe, motivating their taxonomy
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and statistical characterization. The study of AGNs in the nearby Universe shows that the
diversity of AGNs can be understood as resulting from observing a smaller number of basic
AGN types from different viewing angles (see Section 3.1).

Accretion Physics: AGNs are powered by the accretion of magnetized plasma. Studies of AGN
accretion flows complement studies of other accretion flows in astrophysics: accretion onto
protostars and stars, accretion onto compact stellar remnants (neutron stars and stellar mass
black holes), and the accretion that powers gamma-ray bursts. One goal of the studies of
AGN accretion flows is to provide a physical explanation of the different types of AGNs and
their states in terms of the nature of their accretion flows and environments (see Section 3.3).

Role in Eco-Systems: AGNs play an important role for galactic and galaxy cluster eco-systems,
i.e. their mechanical and electromagnetic power contributes to the heating of the interstellar
and intracluster medium, and thus influences the star formation of the host systems (see
Section 2.4).

History through Cosmic Time: Deep radio, IR, optical and X-ray observations of AGNs have
provided us with a wealth of information about the cosmic history of the formation and
growth of supermassive black holes and the evolution of AGNs. Related areas of research
are to clarify the role of AGNs in re-ionizing the intergalactic medium, and to explain the
correlation between black hole masses and the properties of the host galaxy observed in the
local Universe (see Sections 4 & 5).

Fundamental Physics: On the most fundamental level, AGNs allow us to test the theory of
general relativity (GR). GR’s no-hair theorem states that Kerr (and more generally Kerr-
Newman) solutions are the only stationary, axially symmetric vacuum solutions of the Ein-
stein equations with an event horizon. Testing if astrophysical black holes are Kerr black
holes thus constitutes a powerful test of GR in the observationally poorly constrained strong-
gravity regime [3].

Astroparticle Physics: AGNs are astroparticle physics laboratories. A few examples: The TeV
γ-ray emission from AGNs tells us that they can accelerate particles to >TeV energies and
AGNs might even be the sources of Ultra High Energy Cosmic Rays. The studies of the
broadband emission from AGNs allows us to perform time resolved studies of the particle
acceleration processes. AGN observations can also be used to constrain Lorentz Invariance
violations [e.g. 4], and to set upper and lower limits on extragalactic magnetic fields (see the
discussion in [5, 6]).

AGNs as Beacons at Cosmological Distances: The emission from AGNs can be used to study
the properties of objects, diffuse matter, and radiation fields that are located between us and
the AGNs. High-resolution spectra of high-redshift, low-metallicity quasar absorption line
systems have been used to constrain the relative abundance of the light elements produced
during the epoch of the Big Bang Nucleosynthesis [7]. Measurements of the Gunn-Peterson
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Figure 1: Comparison of the morphologies of a FRI radio galaxy (M84, left panel) and a FRII
radio galaxy (3C 175, right panel). M84 is a massive elliptical galaxy in the Virgo cluster. The
false-color composite image shows the Very Large Array 4.9 GHz image of the radio galaxy in
red [11], the Chandra 0.5-2 keV image of hot galaxy gas in blue [12], and a Sloan Digital Sky
Survey optical image in yellow and white. The radio galaxy has a projected diameter of ≈12
kpc. The Very Large Array 4.9 GHz image of 3C 175 (z = 0.768) shows a well-collimated jet,
and two hot spot complexes typical for FRII radio galaxies. The projected distance between the
two hotspots at the two ends of the radio galaxy is ≈370 kpc. Credits for the left panel: X-ray
(NASA/CXC/MPE/A.Finoguenov et al.); Radio (NSF/NRAO/VLA/ESO/R.A.Laing et al); Optical
(SDSS). The right image is a courtesy of NRAO/AUI.

optical depths of high-redshift quasars constrain the re-ionization history of the intergalactic
medium [8]. X-Ray Absorption lines constrain the abundance and properties of warm-hot in-
tergalactic medium [9]. The study of the GeV and TeV γ-ray energy spectra of blazars can be
used to constrain the energy spectrum of the infrared and optical Extragalactic Background
Light [10].

The discussion in this paper is limited to recent results concerning the properties and inner workings
of AGNs, and does not cover the research that uses AGNs as probes of the intervening medium. In
Sect. 2 we discuss observations of AGN jets and their interpretation. In Sect. 3 we describe obser-
vations of the AGN cores, as well as models of AGN accretion and jet formation. We review recent
results concerning the cosmic history of black hole accretion in Sect. 4, and trigger of black hole
growth in Sect. 5. We conclude with a brief description of upcoming observational opportunities
afforded by present and upcoming experiments in Sect. 6.

3



2 AGN Jets on pc, kpc and Mpc Scales

2.1 Morphology of Radio Galaxies

Some of the gravitational energy of the material accreted by AGNs is converted into heat and
electromagnetic radiation inside the accretion disk and is radiated away by the accretion disk. Some
of the material processed through the accretion disk escapes the accretion system as collimated
(jets) and uncollimated (winds) outflows. The event horizon of a non-rotating Schwarzschild black
hole is two times the gravitational radius:

rg =
GMBH

c2
≈ 1.48

MBH

108M�
1013 cm (1)

Approximately 10%-20% of AGNs are radio loud (radio to optical spectral index >0.35, see e.g.
[13, 14]), and show bright extended radio features with sizes up to ∼1 Mpc (3.08× 1024 cm). The
AGN phenomenon thus spans ∼11 orders of magnitudes in size scales.

The first jet of a SMBH was observed in the optical: in 1918, H. D. Curtis wrote about the
object M 87 in the Virgo cluster [17]: “A curious straight ray lies in a gap in the nebulosity in p.a.
20◦, apparently connected with the nucleus by a thin line of matter.” It was not before 1963 that
the extragalactic nature of quasars (quasi-stellar objects, a type of AGNs) was established when
Schmidt measured the redshift z = 0.158 of the radio source 3C 273 [18]. We now know that
radio-loud galaxies come in two qualitatively different types (see Fig. 1): Fanaroff-Riley Class I
(FRI) sources have center-brightened outflows and Fanaroff-Riley Class II (FRII) exhibit an edge-
brightened morphology. Whereas the separation of the regions of highest radio brightness of FRI
sources are smaller than half the size of the radio source, those of FRII sources are larger than
half the size of the radio source. FRI sources are less powerful than FRII sources, with 1.4 GHz
luminosities below and above 5× 1025 W Hz−1, respectively.

The observations of AGNs with single-dish and interferometric radio telescopes and with op-
tical telescopes have provided us with detailed information about the morphology of radio-loud
AGNs. As an example, Fig. 2 shows radio and optical images of M 87 with various resolutions,
zooming in from an image of radio lobes blown by the central engine into the intracluster gas to
the inner jet imaged with a resolution of a few 10 rg. One distinguishes between the unresolved
radio-core (which is likely to coincide with the location of the SMBH), the well collimated jet
(which transports energy away from the SMBH), jet knots (locations of increased energy dissipa-
tion), hotspots and hotspots complexes (where the jet impinges on the ambient medium and most
of the mechanical jet energy is dissipated in strong shocks), and lobes of radio-emitting plasma.

Radio-interferometric (and sometimes optical) observations of some AGNs reveal jet features
moving with apparent motions exceeding the speed of light. Such “superluminal” motion can be
explained by a near-alignment of the jet with the line of sight combined with highly-relativistic
motion of the radio plasma. Photons emitted over a certain time interval reach the observer in a
shortened time span as the plasma travels almost with the speed of light and thus stays closely
behind photons emitted towards the observer. The apparent velocity can then exceed the speed of
light.
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Figure 2: Images of the radio galaxy M87 at the center of the Virgo galaxy cluster at different
spatial scales and in different wavelengths. The Very Large Array radio image (top left) side
shows the kpc-scale jet inflating radio lobes. The Hubble Space Teelscope optical image (top
right) shows the structure of the kpc-scale jet. The Very Long Baseline Array image (bottom
center) shows the sub-pc scale jet very close to the black hole. Credits: National Radio Astronomy
Observatory/National Science Foundation,NASA and John Biretta (STScI/JHU), National Radio
Astronomy Observatory/Associated Universities, Inc.

If we denote the jet plasma velocity with v = βjc ≈ c (c being the speed of light), we can
introduce the bulk Lorentz factor of the plasma with

Γj = (1− β 2
j )−1/2. (2)

Emission from the jets is red or blue-shifted by the relativistic Doppler factor

δj =
1

Γj(1− βj cos θ)
(3)

with θ being the angle between the jet axis and the line of sight as measured in the observer
frame. A detailed study of a statistically complete, flux-density-limited sample of 135 compact
radio sources with the Very Long Baseline Array (VLBA) and the Metsähovi Radio Observatory
reveals relativistic motion with bulk Lorentz factors Γj between 1 and ∼40 [20].
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2.2 X-ray and Gamma-Ray Observations of kpc-Scale Jets

The Chandra X-ray observatory discovered X-ray emission from the kpc-scale jets and hotspots of
a large number of radio-loud AGNs [21]. The XJET web-site1 lists the detection of X-ray emission
associated with the jets from ∼120 AGNs. The origin of the X-ray emission is still somewhat
uncertain, especially for the higher-power FRII-type sources.

For the low-power FRI-type sources, the X-ray emission form the kpc-jets can in most cases be
explained as synchrotron emission from ∼TeV electrons gyrating in 10-1000 µG magnetic fields.
As electrons loose their energy on time scales of years, the X-ray bright spots imply in-situ particle
acceleration. Well resolved jets show X-ray bright knots, sometimes spread over the extension of
the jet (Fig. 3). The hypothesis of a synchrotron origin of the X-rays is supported by the rapid time
variability of the X-ray flux from the knots of the M87 jet [21], the radio to X-ray energy spectra
which allow modeling with a single synchrotron component with a monotonic softening of the
energy spectrum from the radio to the X-ray band (Fig. 4, left panel), and the relative morphologies
of the radio, optical and X-ray emission.

For the higher-power FRII-type sources, the radio to X-ray energy spectrum can often not be
described with a single synchrotron component as the radio, optical and X-ray observations imply a
significant hardening of the energy spectrum between the optical and the X-ray band (Fig. 4, right
panel). The presently favored explanation of the X-ray emission is that it originates as inverse-
Compton emission of mildly relativistic (∼MeV) electrons embedded in a highly relativistic plasma
moving with a bulk Lorentz factor Γ ∼10. In the co-moving reference frame of the jet plasma
(primed variables), the mean frequency of cosmic microwave background (CMB) photons is

ν ′CMB = (1 + z) Γj ν0 (4)

and the CMB energy density is

u′CMB ≈ (1 + z)4 Γ 2
j uCMB,0 (5)

with the local present day values ν0 ≈ 1.6 × 1011 Hz and uCMB,0 ≈ 4 × 10−13 erg cm−3. The
boosting of the mean energy and energy density proportional to Γj and Γ 2

j , respectively, explains
the presence of a relatively strong inverse-Compton component in the X-ray band. The inverse-
Compton/CMB model predicts an increase of the X-ray to radio brightness proportional to the
energy density of the CMB which scales with (1 + z)4. The data indeed show such a trend for
a small sample of sources (Fig. 5). However, the model faces several problems: for some of
the sources the inverse-Compton/CMB model implies very small viewing angles and thus large
physical source diameters on the order of hundreds of Mpc [22]; furthermore, for some jets, the
model parameters imply a rather high jet power (∼1048 erg s−1) [23]. With regards to jet models,
the most interesting implication of the inverse-Compton/CMB model is the relativistic motion of
the jet plasma at ∼kpc distances from the SMBH. An alternative explanation for the observed
X-ray emission is synchrotron emission from an additional high-energy electron population [22].

1http: //hea-www.harvard.edu/XJET/
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Figure 3: Multiwavelength images of the radio galaxies M87 (left panel) and Cen A (right panel).
The left image shows from top to bottom the 14.435 GHz Very Large Array (VLA) image, the
Hubble Space Telescope Planetary Camera image in the F814W filter, and the the Chandra X-
ray (keV) image; the bottom panel shows the Chandra image overlaid with contours of the Hubble
Space Telescope image smoothed to match the Chandra point response function. The Hubble Space
Telescope and Very Large Array images use a logarithmic color scale, and the X-ray image uses
a linear scale. The portion of the jet shown in the image has a projected length of ≈1.6 kpc. The
right image shows a false-color image of the radio galaxy Centaurus A as seen by Chandra (color
image: 0.4-0.85 keV (red), 0.85-1.3 keV (green), and 1.3-2.5 keV (blue)) and the VLA at 5 GHz
(contours at 7× (1, 4, 16, ) mJy beam−1). The portion of the northern X-ray jet has a projected
length of ≈3 kpc. The left panel is reproduced from Ref. [15], c©2002 American Astronomical
Society, and the right panel is reproduced from Ref. [16], c©2007 American Astronomical Society.

However, in this case, the peak position of the second emission component at �keV-energies
remains unexplained.

The Fermi LAT has recently detected emission from the core, and the northern and southern
lobes of the radio galaxy Cen A [24, 25]. The emission can be explained as inverse-Compton
emission from electrons scattering photons of the CMB and maybe also higher-frequency photons.
Whereas the synchrotron radio emission traces the combined properties of the radio-emitting elec-
trons and the magnetic field strength, the inverse-Compton emission in the γ-ray band traces the
high-energy electrons more directly. The combined data can also be used to set an upper limit on
the magnetic field B in the lobes of B <1µG. It would be extremely interesting to obtain aγ-ray
image with a substantially improved signal-to-noise ratio.

2.3 Composition of AGN Jets

It is quite remarkable that we are still uncertain about the composition of AGN jets. One of the
reasons is the dominance of non-thermal continuum emission from jets leading to a lack of detected
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Figure 4: Spectral energy distribution of two knots of the M87 jet (left panel, see the left lower-
center panel of Fig. 3 for the labels of the knots). The radio, optical and X-ray flux points can
be explained with a single population of non-thermal electrons (and/or positrons) with an energy
spectrum that softens monotonically with energy. The dashed and dotted lines show synchrotron
models. The right panel presents the spectral energy distribution of the knot WK7.8 of the quasar
PKS 0637-752 that shows evidence for two emission components, one component extending from
radio to X-rays and another one extending from X-rays to gamma-rays. The authors favor the in-
verse Compton/CMB model (solid line) over the SSC model (dashed line) as the former requires
less power than the latter (3×1048 ergs s−1 compared to >1049 ergs s−1). The left panel is repro-
duced from Ref. [15], c©2002 American Astronomical Society, and the right panel is reproduced
from Ref. [19], c©2000 American Astronomical Society.

lines that give away the nature of the jet plasma. Theoretical considerations suggest that the energy
and momentum of the jets is initially (at distances of a few 10 rg) dominated by electromagnetic
energy (Poynting flux). At larger distances (on the order of a few 100 or 1000 rg) the electro-
magnetic energy is transferred to particles. The particles carrying the energy might be electrons
and positrons or Interstellar Medium (ISM) processed through the accretion disk and/or entrained
along the way. The jet may entrain additional ISM as it propagates, leading to a decrease of Γj with
distance from the central engine.

For Flat Spectrum Radio Quasars (FSRQs), Sikora & Madejski (2000) argue that jets with
Γj ∼ 10 cannot be dominated by cold pairs at their bases, as the inverse-Compton emission from
the pairs scattering UV-radiation from the accretion disk would give rise to an unobserved soft
X-ray emission component [27] (see also [28, 29]).
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Figure 5: Ratio of the X-ray and radio fluxes of high-redshift (z > 1) jets discovered with Chandra
following [26]. For the nearby source PKS 1136135 at z = 0.5 the spread of the z < 1 jet popula-
tion is shown. The data indicate that the ratio follows approximately the (1+z)4-behavior predicted
by the inverse-Compton/CMB model, albeit with a large spread (Courtesy of C. C. Cheung, 2012).

2.4 AGN Feedback

Several X-ray observatories (first ROSAT, later Chandra and XMM-Newton) discovered large “cavi-
ties” in the hot X-ray bright gas of elliptical galaxies, galaxy groups, and galaxy clusters associated
with the radio lobes of AGNs [30, 31] (see also Fig. 6). The cavities are caused by AGNs inflating
bubbles of radio plasma which displaces the hot X-ray bright interstellar or intracluster medium.
One can use these cavities to constrain the composition of the radio plasma in the cavities. For
galaxy clusters, the intracluster medium (ICM) pressure is well constrained by the spectroscopic
X-ray images of the ICM. One can estimate the p dV work required to inflate the bubbles. Com-
bining this work with an estimate of the ages of the cavities (assuming they rise at the local sound
speed), one can estimate the power required to inflate the bubbles of radio gas. Comparing the
latter with the broadband radio power one can estimate the ratio k of the total jet power divided
by the power carried by non-thermal electrons responsible for the observed radio emission. Such
studies show k ∼ 100 (Fig. 7) and the presence of “dark” pressure-contributing components (non-
thermal low-energy electrons, non-thermal protons, or magnetic field). Although AGN jets seem to
have sufficient power to balance the radiative (Bremsstrahlung) cooling of the intracluster gas and
to explain the lack of cold gas and freshly formed stars at the centers of galaxy clusters, the role
of AGNs in heating the ICM is not well established [33]. The jet power may not be transformed
efficiently into ICM heat, and other processes (i.e. efficient heat conduction owing to anisotropic
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Figure 6: A Chandra X-ray image of the Perseus galaxy cluster showing the emission from the
hot ICM. The X-ray brightness clearly shows two cavities carved out by the radio plasma from
the central radio galaxy NGC 1275. The ripples in the brightness distribution are explained as the
result of sound waves propagating through the ICM. The opposite ends of the two radio bubbles
are at a projected distance of ≈65 kpc, and the bright ICM emission has a projected diameter of
≈360 kpc [from 32]. Credits: NASA/CXC/IoA/A.Fabian et al..

transport properties) may dominate the heating of cluster cores.

2.5 Magnetohydrodynamic Simulations of Jets

The basic theoretical framework that is currently used to explain the observational appearance of
radio-galaxies was introduced in the 1970s [35, 36, 37, 38]. However, the predictive power of
analytical jet models is limited owing to the non-linear processes taking place as jets propagate
through the ambient medium. Recently, it has become possible to study jets with relativistic 3-D
hydrodynamic (HD) and magnetohydrodynamic (MHD) codes (see e.g. [39, 40] and references
therein). The simulations can reproduce the observed morphologies of radio sources rather well.
Combined analytical and numerical studies show that certain ingredients can increase the stability
of jets, i.e. magnetic fields, steep pressure gradients, a high density contrast between jet and external
medium, fast motion, or sheath/shear velocity outflow around the jet (e.g. [41] and references
therein). The codes use the one-fluid approximation and do not model the microscopic effects
occurring in the astrophysical plasmas in detail. Particle in cell (PIC) simulations can shed light
on some of the processes occurring when relativistic flows propagate through ambient media [e.g.
42].
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Figure 7: The power required to blow cavities into the ICM as function of the power in the electrons
that emit the observed radio emission. The former power exceeds the latter by an average factor
on the order of 100 (diagonal lines), indicating that the energy density of the radio plasma in
the cavities is dominated by a “dark component” that has not yet been detected. The image is
reproduced from Ref. [34], c©2008 American Astronomical Society.

3 Emission from the Central Regions of AGNs

3.1 Overview of Emission Components

The radio, infrared, optical, UV, X-ray and γ-ray observations of AGNs can be explained with
a single model of the central AGN region. In the paradigm, the different types of AGN result
from different viewing angles towards the symmetry axis, and from the absence or presence of
certain components [43]. We briefly explain the most important emission components and their
interpretation (see also Fig. 8):

Emission from the Accretion Disk: In some AGNs, emission from the accretion disk itself may
have been detected. The feature, often referred to as the Big Blue Bump, can extend from the
(AGN-frame) optical/UV band to the soft X-ray band and is believed to be thermal emission
from the accretion disk [e.g. 44, 45].

The accretion disk is partially covered by a corona of hot - yet still thermal - material. The
hot corona Comptonizes some of the emission producing a high-energy tail extending into
the hard X-ray regime. Alternative explanations of the origin of the hard X-ray emission
include a hot inner flow [e.g. 46, 47], the “lamp-post model” of an X-ray source illuminating
the accretion disk from above [e.g. 48, 49], and a structured multilayer corona [50].

11



In the X-ray spectra of some AGN one detects a broad X-ray emission line at ∼6.4 keV in
the AGN rest frame. The line is believed to be fluorescence Fe K-α emission of iron atoms
in the inner accretion disk excited by the hard X-rays from a source above the disk [e.g.
51, 52, 53, 54]. Its shape results from the gravitational redshift incurred by photons climbing
out of the black holes gravitational well, and the blue and redshift from the relativistic motion
of the disk material. The analysis of the line shape can be used to measure the black hole
spin. For the Seyfert galaxy MCG6-30-15, the analysis of the Fe K-α line shape indicates a
spin per unit mass of a > 0.987 in dimensionless units, close to the theoretical maximum
value [55].

Radio interferometric observations at 230 GHz have recently achieved sufficiently good res-
olutions to resolve the accretion disk of Sgr A∗, the 4.5× 106 M· SMBH at the center of the
Milky Way [56]. The radio emission is polarized cyclo-synchrotron emission.

Continuum Emission from the Inner Jet: Under favorable conditions, the accretion leads to the
formation of a highly relativistic collimated jet. The make-up of the jet is not well con-
strained, but is believed to change from magnetic-field-dominated close to the central engine
to particle (electron and positron, or ions and electrons) dominated at >pc distances. Shocks
in the jet (e.g. from re-collimation of the jet or plasma instabilities) or reconnection leads
to the acceleration of electrons to GeV and TeV energies (Lorentz factors up to a few times
106). The electrons emit low-energy synchrotron emission and high-energy inverse-Compton
emission. The latter comes from the electrons scattering synchrotron photons (synchrotron
self-Compton (SSC) emission) or external photons (external Inverse Compton (EIC) emis-
sion), such as BLR photons or photons from upstream or downstream regions of the jet. The
continuum emission holds information about the innermost jet regions and can be used for
time-dependent studies of particle acceleration processes.

Emission Lines from Clouds: Some AGNs exhibit narrow and/or broad emission lines emitted
by rather cold clouds of interstellar material orbiting the black holes at different distances
[57]. The broad line region (BLR) clouds have distances on the order of 10 light days from
the SMBH; the narrow line region (NLR) clouds orbit the SMBH at distances of a few hun-
dred parsecs. The line centroids can be used to measure the redshifts and thus the distances
of AGNs. Observations of the BLR emission and the continuum emission from the accre-
tion disk can be used to estimate the mass of the central black hole based on reverberation
mapping [58, 59]. The technique combines the widths of the BLR lines (which constrain
the orbital velocities of the emitting clouds) with measured time lags between variations of
the continuum flux from the accretion disk and the BLR flux. As the BLR emission stems
from reprocessing the continuum flux, the time lag can be used to estimate the distance of the
BLR clouds from the central engine. The information about the velocity of the BLR clouds
and the distance of the BLR clouds from the SMBH constrain the orbital parameters of the
BLR clouds and thus the black hole mass. The technique can be used for AGNs which are so
far away that stellar orbits close to the black hole cannot be resolved. Two classical papers
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Figure 8: The figure shows a sketch of the central engine of an AGN and highlights several
components that can explain most of the observed properties of AGNs (not to scale; example
lengths in parentheses). The central black hole (for anM = 108M� black hole, the Schwarzschild
radius is RS = 3× 1013 cm) is surrounded by an accretion disk (∼ 1− 30× 1014 cm). The broad
emission lines originate in clouds orbiting above the disk (at ∼ 2 − 20 × 1016 cm). A thick dusty
torus (inner radius ∼ 1017 cm) or a warped accretion disk obscures the broad-line region (BLR)
when the AGN is seen from the side; a hot corona above the accretion disk probably plays a role in
producing hard X-rays; narrow lines are produced in clouds much farther from the central source
(1018 − 1020 cm). Radio jets (extending from ∼ 1015 cm to several times 1024 cm) emanate from
the region near the black hole in the case of radio loud AGNs. The image does not show the
broad and narrow absorption line producing winds. The launching region of the broad absorption
line producing winds is uncertain. The narrow absorption line winds are believed to be launched at
distances of∼1018 cm from the central engine at about the same distance from the central engine as
the NLR clouds. The graph is reproduced from [43], c©1995 Astronomical Society of the Pacific.

used the line luminosities as estimators of the accretion rate and studied the correlation of
line luminosities with the kinematic power of the jet. Rawlings, S., & Saunders [60] esti-
mated the jet power based on the energetics of the radio lobes and correlated the estimated jet
power with the [O III] NLR luminosities. The authors found a significant correlation between
these two quantities for a sample of radio galaxies. Celotti et al. (1997) [61] found a sim-
ilar correlation between the BLR luminosities and jet luminosities from very-long-baseline
interferometry (VLBI) observations of radio loud AGNs [see also: 62, 63].

Torus and Winds: Some of the differences between observational AGN classes can be explained
by the presence of a dusty ∼1 pc diameter torus which can obscure accretion disk and BLR
emission from view and emits reprocessed emission from the central engine in the infrared
[64, 65]. At the inner edge of the torus, the AGN continuum emission destroys the dust,
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ionizes the atoms and creates the material making up the BLR and X-ray obscuring clouds.
The presence of blue-shifted broad (BAL) and narrow absorption lines (NAL) in the optical,
UV, and X-ray regime show evidence for fast AGN outflows or winds [66]. While the NAL
outflows are believed to be launched at∼pc distances from the central engine and are largely
radiatively driven, the location and the driving mechanism of the fast (0.2 c) BAL outflows
are still highly uncertain.

At larger viewing angles, the gas torus conceals the BLR and only narrow lines are observed,
resulting in Type-2 Seyferts, and narrow line FRI and FRII galaxies. Closer to the line of sight,
the torus does not obscure the BLR anymore and the AGNs appear as Type-1 Seyferts, radio quiet
quasi-stellar objects (QSOs), and broad line steep spectrum radio quasars (SSRQs) and FSRQs.
For viewing angles < 10◦, the relativistically beamed non-thermal continuum emission from the
relativistic jet dominates and the object is a blazar. BL Lac objects are a sub-class of blazars either
without detected emission lines or with lines with a rest-frame equivalent width smaller than 5
Å [67, 68]. Recently, this classification scheme has been criticized on the grounds that it introduces
strong selection effects [69, 70].

3.2 Recent Blazar Observations with the Fermi Space Telescope and Imaging At-
mospheric Cherenkov Telescopes

In recent years γ-ray astronomy has made spectacular progress. The space-borne Fermi Large Area
Telescope (LAT) [71] and ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) [72]
achieve sensitivities of about 10−12 erg cm−2 s−1. The Fermi LAT covers the 100 MeV-300 GeV
energy range. With its large field of view (∼2.4 sr) it is well suited to monitor the entire sky on
a regular basis. IACTs cover the 50 GeV-30 TeV energy range. With large detection areas on the
order of 105 m2 they are well suited to measure short-term (<1 min) flux and spectral variability.
Between Fermi and the ground-based Cherenkov telescopes, it has become possible to sample the
complete inverse Compton emission component of many blazars (Fig. 9).

The γ-ray telescopes detect mostly blazars and make it possible to study the properties of AGN
jets on short time scales. In the following we use the abbreviations LSP, ISP and HSP to denote
low synchrotron peaked (νSpeak < 1014 Hz), intermediate synchrotron peaked (1014 Hz< νSpeak <

1015 Hz), and high synchrotron peaked (νSpeak > 1015 Hz) blazars. In the earlier literature, the
reader will often find the abbreviations LBL, IBL, and HBL. These names denote the BL Lac
subclasses of LSP, ISP, and HSP blazars, respectively.

The large sample of blazars detected by the Fermi-LAT can be used to study the cosmic evo-
lution of blazars as well as the intrinsic properties of blazars. The cosmic evolution of blazars
depends on the cosmic evolution of SMBHs, the accretion history of these SMBHs, and the his-
tory of the radiative efficiency of the accreting SMBHs. The recently published second Fermi LAT
AGN catalog [75] lists 1017 sources with an AGN association, and a “clean sample” of 886 sources
with unambiguous AGN counterparts. The latter sample includes 395 BL Lacs, 310 FSRQs, 157
candidate blazars of unknown type, eight misaligned AGNs, four narrow-line Seyfert 1 galaxies,
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Figure 9: Broadband spectral energy distribution of the HSP blazars Mrk 421 (left panel, data taken
between January 19, 2009 and June 1, 2009) and Mrk 501 (right panel, data taken between March
15, 2009 and August 1, 2009). The images are reproduced from Refs. [73] (left panel) and [74]
(right panel), c©2011 American Astronomical Society.

ten AGNs of other types, and two starburst galaxies. The redshift distribution (dN/dz) of detected
BL Lacs peaks at z ≈ 0.2 and extends to z = 1.5; the distribution of FSRQs peaks at z ≈ 1.1 and
extends to z = 3.2.

Ajello et al. (2012) use a complete sample of FSRQs detected during Fermi’s first year of
operation to study the luminosity function (LF) and its cosmic evolution [76]. The FSRQ number
density grows up to luminosity dependent redshifts of between 0.5 and 2.0 and declines thereafter.
The sources show an “inverted evolution” with lower power sources peaking at lower redshifts
(later times) than their higher-power counterparts (Fig. 10, left panel). The authors study the rest-
frame spectral energy distribution (SED, energy flux per logarithmic energy interval, E2dN/dE)
of the sources and find that the peak of average SEDs determined for different luminosity bins is
independent of the AGN luminosity (Fig. 10, right panel). The earlier detection of a luminosity-
hardness correlation (sometimes referred to as the “blazar sequence”) [77, 78] may have resulted
from selection effects. Combining the inferred SED shapes with the LF, the authors predict that
FSRQs contribute ∼10% to the isotropic Fermi γ-ray background. Assuming that the jet Bulk
Lorentz factors Γj follow a power law distribution dN/dΓj ∝ Γ k

j over the range from 5 to 40
and that the γ-rays originate as SSC emission, the authors can derive the distribution of intrinsic
jet luminosities L from the distribution of apparent luminosities L (for SSC emission, L ∝ δ pj L
with p = 4). The analysis implies a power law index k of -2.0±0.7, a mean Lorentz factor
of the Fermi-detected FSRQs of ≈12, that most sources are seen from within 5◦ of the jet axis,
and that the detected γ-ray loud FSRQs represent 0.1% of the unbeamed parent population. The
distribution of Γj is in good agreement with those inferred from radio observations on pc-scales
[20]. The finding may imply that both, the radio and the γ-ray emission comes from∼pc-distances
from the central engines, or, that the jet Lorentz factors are the same at the scales probed by the
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Figure 10: Left panel: space density of Fermi-LAT detected FSRQs for different luminosity classes
indicated an “inverted hierarchy” with higher (lower) luminosity objects peaking at higher (lower)
redshifts. Right panel: average rest-frame spectral energy distributions for four FSRQ luminosity
classes. The bands show the 1σ confidence level regions [from 76]. The data do not indicate a
correlation of the energy at which the spectral energy distribution peaks and the γ-ray luminosity.
The images are reproduced from Ref. [76], c©2012 American Astronomical Society.

radio and γ-ray observations.
Ghisellini et al. (2012) study the correlation between the BLR luminosity LBLR and the γ-ray

luminosity Lγ , both measured in units of the Eddington accretion rate, and find a correlation albeit
with a large scatter [29]. The result reinforces the earlier finding that accretion rate (and thus LBLR

and jet power (proportional to Lγ) are correlated, but shows that it is even valid when both are
normalized to the mass of the black hole.

Giommi et al. (2012) report on a Monte Carlo study that shows that selection effects can
strongly affect the outcomes of BL Lac and FSRQ studies [70]. Their work indicates that selection
effects alone can produce an apparent correlation between the peak energy of the synchrotron SED
and the luminosity of the sources. The analysis suggests that powerful BL Lac-type objects may
exist, but cannot be identified as such owing to the relative weakness of the lines. In their model,
all sources are qualitatively the same, but are identified as different sources owing to the relative
strength of several basic emission components, i.e. the Doppler boosted radiation from the jet, the
emission from the accretion disk, the BLR, and the light from the host galaxy. The authors suggest
that – using the standard definitions – BL Lacs and FSRQs may not be the beamed versions of
FRI and FRII, respectively. Ghisellini et al. (2011) offer a definition of BL Lacs and FSRQs based
on the broad line region luminosity in units of the Eddington luminosity (LBLR/LEdd below and
above 5 × 10−4, respectively) [69], which might result in a cleaner identification of the beamed
versions of FRI and FRII galaxies.

IACTs and the Fermi LAT have been used for extensive multiwavelength campaigns. For
HSP blazars, the broadband SEDs [e.g. 79, 80] and fast flux variability [81, 82, 83, 84] imply
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very high relativistic Doppler factors δj (Equation (3)) on the order of 50. The broadband SEDs
can largely be fit with one-zone SSC models [e.g. 85, 86] with notable exceptions [e.g. 87, 88].
Snapshot and time-dependent modeling indicates particle dominated emission zones with electron
and positron energy densities ue+/− exceeding the magnetic field energy density uB = B2/8π by
typical factors of ∼ 100 [79, 85]. Models with additional target photon fields (and with additional
degrees of freedom) make it possible to fit the data closer to equipartition (ue+/− ∼ uB) [89, 90].

LSP and ISP blazars seem to require EIC models. Abdo et al. (2010) discuss the broadband
SEDs of 48 γ-ray bright Fermi blazars [91]. The authors find that one-zone SSC models cannot fit
the SEDs of most LSP and ISP (low frequency peaked BL Lac objects and FSRQs) sources [see
also: 92].

Broadband observations promise to give insights into the mechanisms responsible for the ob-
served flares. There is good evidence for a correlation of the radio and > 100 MeV γ-ray lumi-
nosities of statistical samples of blazars [92, 94, 95, 96], and to some degree of the X-ray and VHE
(Very High Energy, >100 GeV) γ-ray fluxes of HSP blazars (e.g. Fig. 11 and [93, 97]). Marscher
et al. (2008) [98] and Abdo et al. 2010 [99] report the detections of correlated polarization swings
and γ-ray flares. Unfortunately, the interpretation of some of the data is rather ambiguous as the
sources exhibit a wide range of different behaviors; as a consequence, the statistical significance of
the observed features is often rather limited. Unambiguous conclusions would require the observa-
tion of a statistical sample of sources with dense sampling in the temporal and waveband domains
over many years.

The continuum emission from blazars is most commonly explained in the framework of elec-
tron and possibly positron acceleration in internal or external collision-less shocks. The accelerated
leptons radiate synchrotron radio to X-ray and inverse-Compton X-ray to gamma-ray emission.
Unfortunately, attempts to verify that Fermi-type acceleration energizes the leptons based on ob-
servations of predominantly clockwise or counterclockwise loops in the flux vs. spectral index
plane [e.g. 100] failed due to the rather chaotic behavior of the observed sources [e.g. 101, 102].

Some authors consider hadronic models in an attempt to explain the γ-ray emission from
blazars, but such models require the acceleration of protons to > 1018 eV energies and magnetic
fields typically on the order of ∼50 G with very high energy densities to accelerate and confine the
protons [103, 104, 105, 106, 107].

3.3 Models of the Accretion Flow and Jet Formation

A satisfactory model of the central engines of AGNs should explain (i) how matter and magnetic
fields are transported towards the accretion disks of the SMBHs; (ii) which types of accretion disks
occur in nature and how they work; (iii) which physical mechanisms are responsible for accretion
disk state transitions and flares; (iv) how the individual emission components are produced, (v)
how jets form, transform, accelerate and/or decelerate at different distances from the SMBHs; (vi)
how AGNs interact with their environment. The question of how matter and magnetic fields move
towards the central engine (the feeding problem) will not have a simple answer as it will depend
on the cosmic epoch and the type and evolutionary state of the host (a single galaxy or a galaxy
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Figure 11: Results from 2001 Rossi X-ray Timing Explorer (RXTE) 2-4 keV X-ray and Whipple
(full symbols) and HEGRA (open symbols) γ-ray observations of Mrk 421 in the year 2001 [from
93]. IACTs achieve excellent sensitivities on short time scales owing to their large collection areas.
Careful study of the light curves shows that the X-ray and TeV γ-ray fluxes are correlated for some
flares but not for all. Reproduction of the figure with kind permission of the authors.

inside a galaxy cluster). The main challenge is to explain how the matter can shed all but a tiny
fraction of its initial angular momentum while it goes through different phases and moves from
∼kpc distances to the accretion disk [e.g. 40, 108]. One of the open questions concerns the feeding
of magnetic fields with a preferred polarity into the accretion flow, as such magnetic fields can
suppress plasma instabilities in the disk, and can explain the presence of a strong single polarity
magnetic field in the surrounding of the black hole, i.e. in the plunging region between the event
horizon and the innermost circular stable orbit (ISCO). Such magnetic fields are required in some
models of accretion and jet formation.

Accretion disks transform gravitational energy of matter into electromagnetic and mechanical
energy. Shakura & Sunyaev (1973) introduced a model for a geometrically thin (with a thickness
H at radius r such that H(r)/r � 1), optically thick accretion disk [109]. Assuming that the disk
matter orbits the black hole on circular geodesics, that there is no torque at the ISCO, that the disk
radiates away all the dissipated energy, and that no heat is transported in radial direction, the radial
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structure of the disk is entirely determined by mass, energy, and angular momentum conservation
[109, 110]. Using a prescription for the viscosity of the disk, the horizontal disk structure can be
inferred. Although it was suspected that magnetic turbulence caused by the differential rotation
of the accretion disk material was responsible for the viscosity, it was only in 1991 that Balbus
& Hawley identified the magneto-rotational instability (MRI) as the driving instability based on
numerical simulations [111].

A number of authors discuss alternative accretion flows. Ichimaru (1977) describes a two-state
model to explain two qualitatively different emission states of the X-ray binary Cygnus X-1 [46].
Whereas the high-soft state corresponds to the geometrically thin, optically thick radiatively ef-
ficient accretion disk of Shakura & Sunyaev, the low-hard state corresponds to a geometrically
thick, optically thin radiatively inefficient accretion flow (RIAF). In the latter case, a thermal insta-
bility of the disk plasma develops when dissipative heating exceeds the radiative cooling causing
the disk to puff up. Narayan et al. (1994) discusses a self-similar geometrically thick RIAF flow,
the advection dominated accretion flows (ADAFs), in which the gas orbits the black hole with
a velocity well below that of Kepplerian orbits [112]. The authors remark that such flows can
form for low accretion rates when the flow is optically thin, or for very high accretion rates when
the flow is optically thick and the cooling time of the plasma is much longer than the accretion
rate. Variations of ADAFs include convection-dominated accretion flows (CDAFs) [113, 114], and
advection-dominated inflow-outflow solutions (ADIOSs) [115, 116].

The jet is probably launched by the combined effect of thermal pressure, centrifugal forces,
and the Blandford-Znajek process. The latter involves the conversion of the rotational energy of a
black hole spinning in the magnetic field anchored in the accretion disk into electromagnetic energy
[117]. In the presence of a favorably shaped outflow channel (formed by a geometrically thick
accretion disk or by a less collimated wind), the flow can accelerate owing to magnetic pressure
gradients. Energy conservation dictates that the terminal Lorentz factor of the jet obeys Γ∞j < σ0
with σ0 being the magnetization (ratio of electromagnetic to particle energy densities) at the base
of the jet, so that σ � 1 is required to explain Γ∞j � 1.

We would like to know which accretion flows occur in nature, which flow properties lead to
the observed phenomenology, and how the observed jets form. Attempts in this direction include
the identification of the radio quietness and loudness (the absence or presence of a jet) with ge-
ometrically thin and geometrically thick accretion flows, respectively. Some authors explain the
difference between BL Lacs and FSRQs by invoking radiatively inefficient (with weak BLR emis-
sion) accretion flows for the former and radiatively efficient (strong BLR emission) accretion flows
for the latter sources. Unfortunately, none of these associations is firm at the time of writing.

Recently it has become possible to employ 2D and 3D general relativistic magnetohydrody-
namic (GRMHD) simulations with sufficient resolution to test some of the assumptions underlying
the analytical and semi-analytical models. Most simulations neglect radiative transfer of heat owing
to computational limitations. Such simulations have been used, for example, to test the assumption
of zero torque at the ISCO (and zero energy dissipation of the disk plasma within the ISCO). The
results indicate that the zero-torque approximation introduces rather small errors, i.e. it underes-
timates the emitted luminosity by ∼5% [118, 119]. McKinney et al. (2012) studied rather thick
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(H/r ∼ 0.3) accretion flows with large-scale dipole and quadrupole magnetic fields and obtained
two interesting results [40]: (i) the structure of the accreted magnetic field is decisive for the for-
mation of a collimated relativistic outflow; an accretion disk with a dipole magnetic field geometry
does produce a jet, but disks fed by plasma without an ordered magnetic field or with higher mo-
ment magnetic field geometries do not [see also: 120, 121]; (ii) somewhat unexpectedly, the jets
are stable even though the toroidal component of the magnetic field that accelerates the jets could
disrupt the flow owing to helical kink and screw modes. Several effects – including gradual shear,
stabilizing sheaths, or sideways expansion – may be responsible for stabilizing the outflow.

As ordered magnetic fields are needed for the production of jets, McKinney et al. (2012) em-
ploy 3D GRMHD simulations to study a geometrically thick flow supplied with strongly magne-
tized plasma [40]. They find that for rapidly spinning black holes toroidal magnetic fields can lead
to large patches of single-polarity poloidal magnetic fields threading the black hole enabling the
transformation of rotational energy of the black hole into Poynting flux energy. Strong poloidal
magnetic fields build up in the inner region of the disk and compress it into a geometrically thin ac-
cretion flow in which the strong poloidal magnetic field suppresses the MRI. As mentioned above,
further studies are needed to understand which accretion flows are actually realized in nature.

4 The Cosmic History of Black Hole Accretion

Most current black hole formation models tell us that the first black hole seeds emerged at z∼>15.
While the exact mechanism is not known, there are several prevailing theories (see the comprehen-
sive reviews by M. Rees [122] and M. Volonteri [123] for more details). One possibility is that the
first black holes were the remnants of the first generation of stars (Population III stars) that resulted
from the gravitational collapse of primordial ultra-low metallicity gas. These black holes formed
at z∼20 and have typical masses ∼100-1,000 M�. This scenario has problems explaining the
very high masses, of ∼109M�, estimated for supermassive black holes in z>6 optically-selected
quasars [124, 125]. Alternatively, the first black holes could have formed directly as the result of
gas-dynamical processes. It is possible for metal-free gas clouds with Tvir∼>104K and suppressed
H2 formation to collapse very efficiently [126], possibly forming massive black hole seeds with
M∼104-105M� as early as z∼10-15. If instead the UV background is not enough to suppress the
formation of H2, the gas will fragment and form “normal” stars in a very compact star cluster. In
that case, star collisions can lead to the formation of a very massive star, that will then collapse and
form a massive black hole seed with mass ∼102-104M� [127].

Given the current typical masses of 106−9M�, most black hole growth happens in the AGN
phase [128, 129]. With typical bolometric luminosities ∼1045−48erg s−1, AGN are amongst the
most luminous emitters in the Universe, particularly at high energies and radio wavelengths. These
luminosities are a significant fraction of the Eddington luminosity — the maximum luminosity for
spherical accretion beyond which radiation pressure prevents further growth — for a 108−9 M�
central black hole. A significant fraction of the total black hole growth, ∼60% [130], happens in
the most luminous AGN (quasars) which are likely triggered by the major merger of two massive
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galaxies, as it is discussed in Sect. 5. In the quasar phase, which lasts ∼108 years, the central
supermassive black hole can gain up to∼107-108 M�, so even the most massive galaxies will have
only a few of these events over their lifetime. Further black hole growth, mostly in low-luminosity
(low Eddington rate) AGN, is likely due to stochastic accretion of cold gas, mostly in spiral galaxies
[131].

According to the AGN unification paradigm [43, 132], a large fraction of these sources, ∼75%
locally, are heavily obscured by optically and geometrically thick axisymmetric material, which
explains many of the observed differences among different types of active galaxies. In addition,
luminosity [133] and cosmic epoch [134] play a significant role. One constraint on the fraction of
obscured AGN and its evolution comes from the spectral shape of the extragalactic X-ray “back-
ground” (XRB). Thanks to deep X-ray observations at E∼<10 keV performed by Chandra and XMM-
Newton, a very large fraction of the X-ray background,∼80%, has been resolved into point sources
[135], the vast majority of them AGN [136]. Several studies, the first of them∼20 years ago [137],
have used a combination of obscured and unobscured AGN to explain the spectral shape and nor-
malization of the X-ray background with overall good results. The latest AGN population synthesis
models [138, 139] assume an average ratio of obscured to unobscured AGN of ∼3:1 locally, in-
creasing towards lower luminosities and higher redshifts, as well as a fraction of Compton-thick
sources (CT; NH>1024cm−2) of ∼5-10%, consistent with the value observed at higher energies,
E=10-100 keV, of ∼5% by INTEGRAL in the local Universe [138, 140], lower by factors of ∼3
than expectations of previous population synthesis models [141, 142].

Direct black hole mass measurements, either through stellar or gas dynamics, are available
only for a few nearby galaxies. However, thanks to the tight correlation between the mass of the
supermassive black hole and other properties (such as velocity dispersion), it has been possible to
estimate the black hole mass function at z'0 [143, 144, 145, 146]. This is commonly done starting
from the observed galaxy luminosity or velocity function and assuming either a constant black
hole to stellar mass ratio [143] or the M-σ relation [145]. Both the overall shape of the black hole
mass function and the integrated black hole mass density, which can only be computed at z'0, can
be used to infer properties of the AGN population. This was first used in the so-called “Soltan’s
argument” [129], which says that the intrinsic bolometric AGN luminosity, L, is directly linked to
the amount of mass accreted by the black hole, Ṁacc:

L = εṀaccc
2,

where ε is the accretion efficiency and c is the speed of light. A typical value assumed for the
efficiency is ∼10% [129, 145].

Recent comparisons of the black hole mass function to the distribution inferred from the ob-
served AGN luminosity indicate that the average efficiency is 8%, the Eddington ratio is ∼50%,
and the average lifetime of the visible AGN phase is ∼108 years [145, 146]. By studying the black
hole mass distribution at the high mass end, M>109M�, Natarajan & Treister [147] found that
the observed number of ultra-massive black holes is significantly lower than the number density
inferred from the AGN hard X-ray luminosity function. They concluded that this is evidence for
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Figure 12: Total accreted mass by supermassive black holes per cubic megaparsec as a function of
redshift. The gray rectangle shows the range of values allowed by observations of z '0 galaxies
[148]. The data points at z∼2 correspond to the values obtained from Chandra observations of
X-ray detected AGN and luminous infrared galaxies [130], while the upper limits at z>6 show the
results described in [149] (red and black data points from the observed-frame soft and hard X-ray
band observations respectively). The black solid line shows the evolution of the total accreted mass
per proper volume element inferred from the extrapolation of AGN luminosity functions measured
at lower redshifts [138]. We over-plot the predictions of black hole and galaxy evolution mod-
els [123] for non-regulated growth of Population-III star remnants (cyan line) and direct-collapse
seeds (green). The red and blue lines show the predicted BH mass density if self-regulation is
incorporated.

an upper limit to the black hole mass, which can be explained by the presence of a self-regulation
mechanism.

The observed black hole mass density at z'0 obtained by integrating the black hole mass
function, ranges from 2.9×105 [144] to 4.6+1.9

−1.4×105 M�Mpc−3 [145]; more recently, Shankar et
al. (2009) found 3.2-5.4 ×105 M�Mpc−3 [148]. For comparison, integrating the AGN hard X-
ray LF, including the number of Compton-thick AGN constrained by INTEGRAL and Swift/BAT
observations, Treister et al. obtained a value of 4.5× 105 M� Mpc−3, perfectly consistent with the
observed value, indicating that at least locally, X-ray detected AGN can account for most or all of
the black hole growth [138]. A comparison between the observed black hole mass density at z'0
and the value derived from integrating the AGN luminosity function is shown in Figure 12.

At higher redshifts, the black hole mass density at z∼1-3 can be derived from the Chandra
observations of X-ray detected AGN and luminous infrared galaxies at z∼2 [130]. Upper limits
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to the observed black hole mass density at z>7 were obtained from X-ray stacking at the position
of high-redshift galaxy candidates in the Chandra Deep Field South by [149]. Although a strong
detection at z∼6 was reported [149], it was recently questioned by other authors [150, 151]. In
the following, we treat the detection as an upper limit. The measurements can be compared to
the expectations derived from black hole growth models. In particular, we use as a comparison
the results in [152], [153] and [154]. Two “seed” formation models are considered : those deriving
from population-III star remnants (Pop III), and from direct collapse models (D.C.). In this scheme,
the central black holes accumulate mass via accretion episodes that are triggered by galaxy mergers.
Accretion proceeds in one of two modes: self-regulated or un-regulated. For each black hole in
these models we know its mass at the time when the merger starts (Min), and we set the final mass
through the self-regulated or un-regulated prescription. These two models differ by the amount of
mass a SMBH accretes during a given accretion phase. As it can be seen in Fig. 12, models that do
not incorporate the effects of self-regulation in black hole growth are grossly inconsistent with the
available observational data.

While a clear picture of the history of black hole growth is emerging, significant uncertainties
still remain. In particular, while the spectral shape and intensity of the extragalactic X-ray back-
ground have been used to constrain the AGN population, the number of heavily obscured accreting
supermassive black holes beyond z∼1 is not properly bounded. Infrared and deep X-ray selection
methods have been useful in that sense, but have not provided a final answer, due to confusion with
star-forming galaxies in the infrared and the effects of obscuration in X-rays. At higher redshifts,
the situation is even more unclear, and only a few, very rare, high luminosity quasars are known.
Unless high-redshift AGN luminosity functions are pathological, these extreme sources do not rep-
resent the typical growing black holes in the early Universe. As a consequence, and in spite of
recent advances [149, 155], the formation mechanism for the first black holes in the Universe is
still unknown.

5 What Triggers Black Hole Growth?

While it is clear now that most galaxies contain a supermassive black hole in their center, only a
small fraction of these black holes are AGNs. This indicates that black hole growth is most likely
episodic, with each luminous event lasting ∼107-108 years [156]. An obvious question is: What
triggers these black hole growth episodes?

Major galaxy mergers provide a good explanation, since, as simulations show, they are very
efficient in driving gas to the galaxy center [157], where it can be used as fuel for both intense
circumnuclear star formation and black hole growth. Indeed, a clear link between quasar activity
and galaxy mergers has been seen in intensely star-forming galaxies like ultra-luminous infrared
galaxies (ULIRGs) and in some luminous quasars [e.g., 158]. In contrast, many AGN are clearly
not in mergers or especially rich environments [159]. Instead, minor interactions [160], instabilities
driven by galaxy bars [161] and other internal galaxy processes might be responsible for these
lower activity levels. Understanding the role of mergers is further complicated by the difficulty of
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detecting merger signatures at high redshifts.
In order to reconcile these potentially contradictory observations, it has been suggested that

the AGN triggering mechanism is a function of luminosity and/or redshift [162, and others].
More recently, Hopkins & Hernquist [163] used five indirect tests to conclude that the trigger-
ing mechanism is strongly luminosity-dependent and more weakly redshift-dependent, so that only
the most luminous sources, which are preferentially found at z>2, are triggered by major mergers
[163]. Thanks to results from large AGN surveys, which now include heavily-obscured IR-selected
sources, and recent deep high-resolution observations carried out with the Hubble WFC3 detector,
it is now possible to obtain reliable morphological information even for high-z, low luminosity
sources.

To measure the fraction of AGN hosted by a galaxy undergoing a major merger as a func-
tion of luminosity and redshift, Treister et al. (2012) compiled information from AGN sam-
ples selected from X-ray, infrared and spectroscopic surveys [164]. They studied data from
10 independent surveys, which include 874 AGN, spanning a wide range in luminosities,
3×1042<Lbol(erg s−1)<5×1046, and redshift, 0<z<3. The goal of their work is to determine
the physical mechanism(s) that provoked the AGN activity identified in these surveys. Only vi-
sual morphological classifications have been used, as they are the reliable option to determine if
a galaxy is experiencing a major merger [165]. The fraction of AGN linked to galaxy mergers in
these samples has been computed by dividing the number of AGN in which the host galaxy has
been classified as an ongoing merger or as having major disturbances by the total number of AGN.
Figure 13 shows the fraction of AGN showing mergers as a function of bolometric luminosity,
which increases rapidly, from ∼4% at 1043 erg s−1 to ∼90% at 1046 erg s−1.

The spectral shape and intensity of the X-ray background can tell us about the average prop-
erties of the AGN population. Using the models of [138] with the AGN luminosity function of
[166] and the luminosity dependence of the fraction of AGN triggered by major mergers, we can
estimate their contribution to the background radiation in X-rays. In Figure 14 we show separately
the contributions to the X-ray background from AGN triggered by secular processes and major
mergers, which contribute nearly equally to the X-ray background. This is because most of the
X-ray background comes from z<1 sources [e.g., 138], where AGN activity due to secular pro-
cesses is relatively more important. This is particularly true at E>10 keV, where AGN emission
is roughly unaffected by obscuration. Because of the luminosity dependence of the fraction of
obscured AGN [e.g., 167], AGN triggered by secular processes are relatively more obscured than
those attributed to major galaxy mergers, which explains the different spectral shapes in Figure 14
and the fact that AGN triggered by mergers are more important at E<5 keV. We note that a popula-
tion of high-luminosity heavily-obscured quasars likely associated with major mergers have been
reported by [130] and others. These sources are mostly found at z∼2 and show evidence of very
high, Compton thick, levels of obscuration. Hence, these sources do not contribute significantly to
the X-ray background radiation at any energy.

In Figure 15 we show, as a function of redshift, the amount of black hole growth and number
of AGN triggered by major galaxy mergers relative to those associated with secular processes. As
can be seen and was previously reported [e.g., 130], black hole growth occurs mostly in accretion
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Figure 13: Fraction of AGN showing mergers as a function of the AGN bolometric luminosity.
Colors indicate AGN selection method (red: infrared, blue: X-rays, black: optical) (from [164]).
Encircled symbols show samples at z<1. Solid line shows a fit to the data assuming a linear
dependence of the fraction on log(Lbol), while the dashed line assumes a power-law dependence.

episodes triggered by major galaxy mergers, although secular processes are still important. This is
particularly true at z&2, where there is ∼60% more black hole growth in merger-triggered AGN
than in those growing via secular processes. At lower redshifts, there are relatively fewer galaxy
mergers and so secular processes become slightly more important. Furthermore, at lower redshifts
dry mergers become more common than gas-rich major mergers [168]. Since the availability of
gas is a critical factor in determining the black hole accretion rate, this further explains why major
mergers are relatively more important at high redshifts. It is interesting to note that the diminishing
role of mergers coincides with the decline in the space density of black hole growth and with the
observed decline in the cosmic star formation rate [169], i.e., cosmic downsizing. Integrated over
the whole cosmic history, to z=0, 56% of the total black hole growth can be attributed to major
galaxy mergers.

In terms of numbers, the population is strongly dominated by secularly-triggered AGN. Indeed,
as can be seen in Figure 15, ∼90% of AGN at all redshifts are associated with secular processes.
This explains the conclusions of previous studies, mostly based on X-ray surveys [e.g. 170, 171,
172] of moderate luminosity AGN, which found that normal disk-dominated galaxies constitute
the majority of the AGN host galaxies. We conclude that while most AGN are triggered by secular
processes, most of the black hole growth, particularly at high redshifts, can be attributed to intense
accretion episodes linked to major galaxy mergers.
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Figure 14: Spectral energy distribution of the extragalactic X-ray background, as a function of
observed-frame energy. Observational data points are summarized in [138]. Merger-triggered
AGN (blue line) contribute roughly equal amounts of light as black hole growth (red line). Most of
the X-ray background emission comes from z<1 [138], hence the relative importance of secularly-
triggered AGN. The extragalactic background light from higher redshift AGN peaks in the opti-
cal/UV and is dominated by luminous, merger-triggered AGN. The spectral shapes of the merger
and secular contributions are slightly different since the fraction of obscured sources is a function
of luminosity.

6 Outlook

The recent progress in our understanding has come from a fleet of telescopes and from the pos-
sibility to test accretion disk, jet, and particle acceleration models with numerical codes. On the
observational side, we expect further progress from several observatories; for example:

mm and Sub-mm Radio Emission: the Atacama Large Millimeter Array (ALMA) will revolu-
tionize our understanding of galaxy evolution. Sources of mm and sub-mm emission traced
by ALMA include thermal emission of the warm/cold dust, which traces star formation,
synchrotron radiation associated with relativistic particles and free-free radiation from HII
regions. In particular, CO rotational transition lines have been used to trace the spatial dis-
tribution, kinematics, temperature and mass of the molecular gas [173]. The sensitivity of
ALMA will allow for the detection of luminous IR galaxies (LIR>1011L�), which have been
found to often host a heavily-obscured AGN [174], up to z∼10. Furthermore, with ALMA
it will be possible to study separately the molecular dust surrounding the central black hole
and those in star forming regions in the host galaxy. Due to their limited sensitivity and
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Figure 15: Left panel: Cumulative number of merger-triggered AGN relative to the total number
of AGN as a function of redshift (from: [164]). While secular-triggered AGN vastly outnumber
those triggered by major mergers, by about a factor of ∼10, the latter are on average significantly
more luminous, thus explaining why they constitute ∼60% of black hole accretion. Right panel:
Cumulative fraction of black hole accreted mass in AGN triggered by mergers as a function of
redshift, assuming a constant efficiency for converting mass to light. Black hole accretion is domi-
nated by merger-triggered AGN at all redshifts but especially at z>1. At z∼1, the much lower gas
and merger fractions lead to a dominance of secular processes in AGN accretion.

angular resolution, currently-available mm/sub-mm telescopes are not ideal to study star-
forming regions even in nearby galaxies. This will dramatically change thanks to ALMA,
which will have orders of magnitude better sensitivity and HST-like angular resolution. The
first call for ALMA observations was released on March 31, 2011, for observations starting
on September 30, 2011. It is expected that the complete array will be in full operation in
2013. The superb spatial resolution and sensitivity of ALMA will allow the identification
of the optical/near-IR counterpart of the mm-submm sources. Furthermore, ALMA will di-
rectly provide the redshift of the mm-submm sources through the detection of CO rotational
transition lines, up to very high redshifts. Combining these new data with existing multi-
wavelength information will finally allow us to complete the census of supermassive black
hole growth since the epoch of cosmic re-ionization.

Using (sub)mm observatories around the world for very long baseline interferometry, it
should be possible to achieve angular resolutions on the order of 20 µas [175]. Such angular
resolutions, corresponding to a few gravitational radii of the SMBHs in the Milky Way and
in the nearby radio galaxy M87, may allow us to observe the shadow of these two SMBHs.
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The measurements would provide direct evidence for the presence of an event horizon; fur-
thermore, they would allow us to measure the Sgr A* and M87 SMBH spins, and to perform
rough tests of GR in the strong gravity regime.

Hard X-rays: launched in June 2012, NuSTAR is the first focusing hard X-ray (5-80 keV) X-ray
mission, reaching flux limits ∼100 times fainter than INTEGRAL or Swift/BAT observations
and comparable to Chandra and XMM-Newton at lower energies. During the first two years
of operations, NuSTAR observes, as part of the guaranteed time program, two extragalactic
fields: the ECDF-S and the central 1 deg2 part of COSMOS, for a total of 3.1 Msec each.
These deep high-energy observations will enable us to obtain a nearly complete AGN survey,
including heavily-obscured Compton-thick sources, up to z∼1.5 [176]. A similar mission,
ASTRO-H [177], will be launched by Japan in 2014. Both missions will provide angular
resolutions ∼< 1′, which in combination with observations at longer wavelengths will al-
low for the detection and identification of most growing supermassive black holes at z∼1.
Balloon-borne hard X-ray polarimeters [178, 179] might succeed to measure the polariza-
tion of the hard X-ray emission from bright AGN jets. The observations could shed light on
the magnetic field structure in HSP blazars and could distinguish between an SSC and EIC
origin of the inverse-Compton emission of LSP and ISP sources [180].

γ-Rays: the VERITAS array of IACTs has been upgraded in summer 2012 to observe the north-
ern > 100 GeV γ-ray sky with a 30% improved sensitivity. The H.E.S.S. collaboration
announced first light observations with a large 600 m2 Cherenkov telescope in July 2012
which will enable observations down to energies of 50 GeV. Together with the Fermi LAT
and MAGIC, these experiments will scrutinize the γ-ray sky with unprecedented sensitivity.
Long-term monitoring programs enabled by Fermi LAT’s quasi-continuous sky coverage and
multiwavelength campaigns with all the γ-ray telescopes will clarify the existence or non-
existence broadband flux and spectral correlations giving us more detailed information about
the properties of AGN jets at their bases.

Other experiments, currently in the proposal stage, could revolutionize our understanding of AGNs,
including a LISA-type space-based gravitational wave mission (tests of GR, insights into the for-
mation and growth of SMBHs from SMBH spin measurements, [e.g. 181]), an IXO-type high-
throughput soft X-ray observatory (measurement of the spins of a sample of SMBHs through Fe
K-α observations) [182], a GEMS-type high-sensitivity X-ray polarimeter (geometry of accretion
disk coronae and magnetic field structure in jets) [183], and the next-generation Cherenkov Tele-
scope Array (time resolved observations of blazars and mapping of the γ-ray emission from radio
galaxies) [184].
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[119] Penna, R. F., Sä Dowski, A., & McKinney, J. C., “Thin-disc theory with a non-zero-torque
boundary condition and comparisons with simulations”,MNRAS, vol. 420, pp. 684–698,
Feb. 2012.

[120] McKinney, J. C., & Narayan, R., “Disc-jet coupling in black hole accretion systems - I.
General relativistic magnetohydrodynamical models”,MNRAS, vol. 375, pp. 513–530, Feb.
2007.

[121] Beckwith, K., et al., “The Influence of Magnetic Field Geometry on the Evolution of Black
Hole Accretion Flows: Similar Disks, Drastically Different Jets”,ApJ, vol. 678, pp. 1180–
1199, May 2008.

[122] Rees, M., “Structure and properties of nearby galaxies”, Proceedings of the symposium, bad
Muen- stereifel, West Germany, vol. 1, no. 1, pp. 237–244, 1978.

[123] Volonteri, M., “Formation of supermassive black holes”, A&ARv, vol. 18, pp. 279–315, July
2010.

[124] Willott, C., et al., “Eddington-limited Accretion and the Black Hole Mass Function at Red-
shift 6”, AJ, vol. 140, pp. 546–560, Aug. 2010.

[125] Mortlock, D., et al., “A luminous quasar at a redshift of z=7.085”, Nature., vol. 474, pp. 616–
619, June 2011

[126] Bromm, V., et al., “Formation of the First Supermassive Black Holes”, ApJ, vol. 596, pp. 34–
46, Oct. 2003.

[127] Devecchi, B. & Volonteri, M., “Formation of the First Nuclear Clusters and Massive Black
Holes at High Redshift”, ApJ, vol. 694, pp. 302–313, Mar. 2009.

[128] Lynden-Bell, D., “Galactic Nuclei as Collapsed Old Quasars”, Nature, vol. 223, pp. 690–
694, Aug. 1969.

[129] Soltan, A., “Masses of quasars”, MNRAS, vol. 200, pp. 115–122, July 1982.

[130] Treister, E. et al., “Major Galaxy Mergers and the Growth of Supermassive Black Holes in
Quasars”, Science, vol. 328, pp. 600–, Apr. 2010.

[131] Hopkins, P. F. and Hernquist, L., “Fueling Low-Level AGN Activity through Stochastic
Accretion of Cold Gas”, ApJS, vol. 166, pp. 1–36, Sept. 2006.

[132] Antonucci, R., “Unified models for active galactic nuclei and quasars”, ARA&A, vol. 31,
pp. 473–521, 1993.

[133] Lawrence, A., “The relative frequency of broad-lined and narrow-lined active galactic nuclei
- Implications for unified schemes”, MNRAS, vol. 252, pp. 586–592, Oct. 1991.

37



[134] Treister, E. and Urry,C. M., “The Evolution of Obscuration in Active Galactic Nuclei”,
ApJL, vol. 652, pp. L79–L82, Dec. 2006.

[135] Hickox, R. C. & Markevitch, M., “Absolute Measurement of the Unresolved Cosmic X-Ray
Background in the 0.5-8 keV Band with Chandra”, ApJ, vol. 645, pp. 95–114, July 2006.

[136] Mushotzky, R., et al., “Resolving the extragalactic hard X-ray background”, Nature,
vol. 404, pp. 459–464, Mar. 2000.

[137] Setti, G., & Woltjer, L., “Active Galactic Nuclei and the spectrum of the X-ray background”,
A&A, vol. 224, pp. L21–L23, Oct. 1989.

[138] Treister, E. et al “The Space Density of Compton Thick AGN and the X-ray Background”,
ApJ, vol. 696, pp. 110–120, May 2009.

[139] Draper, A. R., & Ballantyne, D. R., “Balancing the Cosmic Energy Budget: The Cosmic X-
ray Background, Blazars, and the Compton Thick Active Galactic Nucleus Fraction”, ApJ,
vol. 707, pp. 778–786, Dec. 2009.

[140] Burlon, D., et al., “Three-year Swift-BAT Survey of Active Galactic Nuclei: Reconciling
Theory and Observations?”, ApJ, vol. 728, pp. 58–+, Feb. 2011.

[141] Treister, E., & Urry,C. M., “Active Galactic Nuclei Unification and the X-Ray Background”,
ApJ, vol. 630, pp. 115–121, Sept. 2005.

[142] Gilli, R. et al., “The synthesis of the cosmic X-ray background in the Chandra and XMM-
Newton era”, A&A, vol. 463, pp. 79–96, Feb. 2007.

[143] Salucci, P. et al. “Mass function of dormant black holes and the evolution of active galactic
nuclei”, MNRAS, vol. 307, pp. 637–644, Aug. 1999.

[144] Yu, Q. and S. Tremaine, “Observational constraints on growth of massive black holes”,
MNRAS, vol. 335, pp. 965–976, Oct. 2002.

[145] Marconi, A. et al, “Local supermassive black holes, relics of active galactic nuclei and the
X-ray background”, MNRAS, vol. 351, pp. 169–185, June 2004.

[146] Shankar, F., et al., “Supermassive black hole demography: the match between the local and
accreted mass functions”, MNRAS, vol. 354, pp. 1020–1030, Nov. 2004.

[147] Natarajan, P., & Treister, E., “Is there an upper limit to black hole masses?”, MNRAS,
vol. 393, pp. 838–845, Mar. 2009.

[148] Shankar, F., et al., “Self-Consistent Models of the AGN and Black Hole Populations: Duty
Cycles, Accretion Rates, and the Mean Radiative Efficiency”, ApJ, vol. 690, pp. 20–41, Jan.
2009.

38



[149] Treister, E., et al., “Black hole growth in the early Universe is self-regulated and largely
hidden from view.”, Nature, vol. 474, pp. 356–358, 2011.

[150] L. L. Cowie, A. J. Barger, and G. Hasinger, “The faintest X-ray sources from z=0-8,” ArXiv
e-prints, Oct. 2011.

[151] C. J. Willott, “No Evidence of Obscured, Accreting Black Holes in Most z = 6 Star-forming
Galaxies,” ApJL, vol. 742, p. L8, Nov. 2011.

[152] Volonteri, M., Haardt, F., & Madau, P., “The Assembly and Merging History of Supermas-
sive Black Holes in Hierarchical Models of Galaxy Formation”,ApJ, vol. 582, pp. 559–573,
Jan. 2003.

[153] M. Volonteri and N. Y. Gnedin, “Relative Role of Stars and Quasars in Cosmic Reioniza-
tion,” ApJ, vol. 703, pp. 2113–2117, Oct. 2009.

[154] Volonteri, M., & Begelman, M. C., “Quasi-stars and the cosmic evolution of massive black
holes”,MNRAS, vol. 409, pp. 1022–1032, Dec. 2010.

[155] Natarajan, P., “The formation and evolution of massive black hole seeds in the early Uni-
verse”, Bulletin of the Astronomical Society of India, vol. 39, pp. 145–161, Mar. 2011.

[156] Di Matteo, T. et al., “Energy input from quasars regulates the growth and activity of black
holes and their host galaxies”, Nature., vol. 433, pp.604–607, Feb. 2005

[157] Barnes, J. E., & Hernquist, L. E., “Fueling starburst galaxies with gas-rich mergers”,ApJL,
vol. 370, pp. L65–L68, 4/1991.

[158] Sanders, D. et al., “Ultraluminous infrared galaxies and the origin of quasars”, ApJ, vol. 325,
pp. 74–91, Feb. 1988.

[159] De Robertis, M. M., Yee, H. K. C., & Hayhoe, K., “A CCD Study of the Environment of
Seyfert Galaxies. II. Testing the Interaction Hypothesis”,ApJ, vol. 496, pp. 93, March 1998.

[160] Moore, B., et al., “Galaxy harassment and the evolution of clusters of galaxies”, Nature,
vol.379, pp.613-616, Feb. 1996

[161] Kormendy, J. and Kennicutt, C., Jr., “Secular Evolution and the Formation of Pseudobulges
in Disk Galaxies”, ARA&A, vol. 42, pp.603–683, Sep. 2004

[162] Finn, R., et al., “WFPC2 Imaging of Quasar Environments: A Comparison of Large Bright
Quasar Survey and Hubble Space Telescope Archive Quasars” ApJ, vol. 557, pp.578–593,
Aug. 2001

[163] Hopkins, P., and Hernquist, L., “A Characteristic Division Between the Fueling of Quasars
and Seyferts: Five Simple Tests”, ApJ, vol.694, pp.599–609, March 2009.

39



[164] Treister, E., et al., “Major Galaxy Mergers Only Trigger the Most Luminous Active Galactic
Nuclei”, ApJL, vol.758, pp.L39, Oct. 2012

[165] Darg, D., et al., Galaxy Zoo: the properties of merging galaxies in the nearby Universe ?
local environments, colours, masses, star formation rates and AGN activity”, MNRAS, vol.
401, pp.1552–1563, Jan. 2010

[166] Aird, J., et al., “The evolution of the hard X-ray luminosity function of AGN”, MNRAS,
vol. 401, pp. 2531–2551, Feb. 2010.

[167] Ueda, Y., et al. “Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Lumi-
nosity Function and the Origin of the Hard X-Ray Background”, ApJ, vol. 598, pp. 886–908,
Dec. 2003.

[168] Kauffmann, G., & Haehnelt, M., “A unified model for the evolution of galaxies and quasars”,
MNRAS, vol.311, pp.576–588, Jan. 2000

[169] Dahlen, T., et al., “Evolution of the Luminosity Function, Star Formation Rate, Morphology,
and Size of Star-forming Galaxies Selected at Rest-Frame 1500 and 2800 Å”,ApJ, vol. 654,
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