
 USING MATLAB FOR ALGORITHM DEVELOPMENT:
 A COORDINATE MAPPING FOR A RAPID PROTOTYPING SYSTEM

 Orlando J. Hernandez, Sr. Wilfrido A. Moreno

 Center for Microelectronics Research

 University of South Florida
 Tampa, Florida 33620

I. INTRODUCTION

 One of the fundamental
components of a rapid prototyping
system is a high precision linear
induction motor x-y table with laser
interferometer position feedback
(position absolute accuracy is
better than 0.5 µm from the
commanded position over the entire
range of travel)[1]. This table is
used to position VLSI circuits under
a computer controlled laser system;
such that restructuring, and hence
rapid prototyping, can be achieved.
Restructuring takes place by using
the pulsed laser beam to create
conductive links and cut conductors,
thus interconnecting electronic
circuitry as required by the
designer[2].

 During the laser operation, it
is critical that the x-y coordinate
system of the chip (the circuitry)
coincides with the table's
coordinate system. This implies that
there should be no rotation of the
chip coordinate system with respect
to the table's; because if there is
no rotation between the chip and the
table, their coordinate systems can
agree by setting the table's origin
at the chip's origin. Although a
manual rotation compensation stage
is in place; achieving the required
alignment manually is nearly
impossible, and the time required
grows exponentially as the angle
between the coordinate systems
becomes smaller. The tolerated
rotation angle of the chip with
respect to the table is well below

 ABSTRACT

 In this paper we present how MATLAB was used to develop an
algorithm to compensate for rotational misalignment between a
Very Large Scale Integration (VLSI) chip and the table where it
mounts, in a rapid prototyping system. After a basic
mathematical solution to the problem was formulated, MATLAB was
used to enhance and test this solution; such that a robust
algorithm emerged. After the algorithm was validated, it was
implemented in the controlling software of the system. This
resulted in the addition of a real-time misalignment
compensation capability for the rapid prototyping system.

0.1°. Since dimensions of less than 1
µm are involved in this process,
even a very small rotation angle
will result in a considerable error
between the commanded position to
the table and the position on the
chip over a typical range of travel
between 0.25 and 4.00 inch.

 II. BASIC SOLUTION

 In its simplest form, the
problem can be stated as follows:
"There is an inherent error,
introduced by a misalignment between
the chip and the table, such that
the commanded position to the table
does not agree with the position on
the chip." It is required that when
the table is commanded to move to
position (x1,y1) of the chip's design
coordinate system, the laser beam
hits this position on the chip.
Instead, the laser beam will hit
some other (x1+εx,y1+εy) position.
This problem can be identified as
one of error correction or
cancelling, and solved as such.
 In matrix format, let P denote
the commanded position [x y 1]T (e.g.
(x1,y1)) and P' denote the actual
position [x' y' 1]T (e.g.
(x1+εx,y1+εy)); where everything is
being referenced to the chip's
coordinate system. The error
introduced by the misalignment
between the chip and the table can
be described as a matrix T such that
P' = T P ; where the matrix T has
the form

This T matrix is the well known two
dimensional composite translation
and rotation matrix of graphics
theory[3].
 The solution to the problem
consists of finding a matrix t = T-1,
and then pre-multiplying the desired

position P by t before commanding it
to the table. Then

Since t = T-1;

Thus, we have had cancelled the
effects of the error matrix T.
 Finding t,

and hence T, is equivalent to
characterizing the misalignment
present between the chip and the
table. Thus, it only needs to be
done once; as long as the chip is
not replaced in the table.

 III. ALGORITHM DEVELOPMENT

 In general,

 (1)
where N is the number of points used
initially to characterize the
misalignment between the chip and
the table. Taking the transpose of
both sides of equation (1);

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100

BBB

AAA

 = T 012

012

) P t (T = P′

P = P
P T T = P

) P T(T = P
1-

-1

′
′

′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100

bbb

aaa

 =t 012

012

=

11_111

yy_yyy

xx_xxx

 N1-N321

N1-N321

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′′′′

′′′′′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11_111

yy_yyy

xx_xxx

 T N1-N321

N1-N321

 (2)
Then, it is clear that

 (3)
In equation (3), # denotes the
inverse (-1) if N = 3, and the
generalized inverse (Moore-Penrose
inverse) if N>3. If N>3, the rank of
the matrix being inverted is the
number of columns N; and for any
column ranked matrix A, A# = (ATA)-1AT
. It should be noted that N should
be at least 3, so that equation (2)
is not an under-determined system.
Once T is known, t can be found
easily;

 (4)
 The last step before
formulating the algorithm, is to
find the minimum N that will provide
a good error correction. It is
obvious that the larger N is (i.e.
the more points are used to
characterize the misalignment T) the
better T and t are going to be in

the least squared error sense.
Notice that equation (3) is a
formulation of a least squares
problem, except that the right hand
side is transposed. MATLAB was used,
and it was fundamental, to
experiment with different methods
and N's; thus allowing us to find
the best approach to calculating t.
A copy of a MATLAB program used is
provided in APPENDIX A.
Experimenting with these types of
programs, showed us that the
misalignment was non-linear and not
purely rotational, and that the best
way to implement the algorithm was
to use two t's, each one found with
N=3. Since the misalignment is non-
linear, and it is not purely
rotational in nature (i.e. the
components of T and t include
rotation and translation terms, even
though the origins of the coordinate
systems for the chip and the table
coincide), it was found that the
best compensation was obtained by
dividing the x-y coordinate system
of the chip into two triangular
regions; x>y and x<y. A different t
was used to pre-multiply P depending
on which region it laid. The points
used to calculate the t's, were four
significant points near each corner
of the chip (Figure 1). For the t
corresponding to x>y, the lower-
left, lower-right, and upper-right
points were used; for the t
corresponding to x<y, the lower-
left, upper-right, and upper-left
points were used. This is counting
on that the (0, 0) point has been
set somewhere near the lower-left
corner, but it does not have to
coincide with the lower-left point
used in the calculation of the t's.
 A formulation of the algorithm
in C-like pseudo-code follows:

/* At beginning of restructuring
session */
set table's (0, 0) point to coincide
with chip's (0, 0) point;
move to lower-left point;
move to lower-left mark;

 T

1yx

1yx

1yx

1yx

1yx

 =

1yx

1yx

1yx

1yx

1yx

T

NN

1-N1-N

33

22

11

NN

1-N1-N

33

22

11

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′

′′

′′

′′

′′

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′

′′

′′

′′

′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1yx

1yx

1yx

1yx

1yx

1yx

1yx

1yx

1yx

1yx

=T

NN

1-N1-N

33

22

11

NN

1-N1-N

33

22

11
T

 T =t -1

record position from table PT;
Refer PT to the chip's coordinate
system;
move to upper-right point;
move to upper-right mark;
record position from table PT;
Refer PT to the chip's coordinate
system;
move to lower-right point;
move to lower-right mark;
record position from table PT;
Refer PT to the chip's coordinate
system;
move to upper-left point;
move to upper-left mark;
record position from table PT;
Refer PT to the chip's coordinate
system;
calculate t's according to equations
(3) and (4);
/* This portion is done for the rest
of the restructuring session in real
time each time the table moves */
while(in session){
 if(x>y){
 pre-multiply P by the t

corresponding to the
lower triangular region;

 }
 else{
 pre-multiply P by the t

corresponding to the
upper triangular region;

 }
 move table;
}

 To refer the points in the
coordinate system of the table to
the chip's, the following operation
was performed:
Point_in_Chip = Commanded_Point +
 (Commanded_Point -
 Point_Recorded_from_the_Table)
so;
Point_in_Chip = 2 ⋅
Commanded_Point
 - Point_Recorded_from_the_Table

 The complete algorithm was
implemented in the C code of the
rapid prototyping system controlling
software.

 IV. CONCLUSIONS

 We have described an algorithm
to compensate for misalignment
between chip and table in a rapid
prototyping system, and how MATLAB
was used to develop this algorithm.
Implementation of this algorithm in
the controlling software, provided
the system with a real-time position
error correction capability.
 One of the important features
of our algorithm is that it is
independent of the device being
prototyped. Also, it is expandable
to provide compensation, not only in
the x and y directions, but also in
the z direction. Since the system
has a z stepper motor, it is
possible to implement a compensation
for deviations in the surface
coplanarity of the VLSI chip. This
feature is planned to be added in
the future to the system controlling
software.

 APPENDIX A

An experimental MATLAB program used
to identify the best method and the
minimum N that yielded acceptable
results:

disp('Procedure to correct for
mismatches between design
coordinates and');
disp('real coordinates due to
horizontal translation and
rotation.');
disp('(5 ways)');
disp(' ');
disp('Want to enter physical
coordinates as rows? (0 for NO, 1
for YES)');
n=input(' ');
disp(' ');
if n
 xd=[29.2; 2828.2; 2883.2; 2832.2;
73.2; 34.7];
 yd=[101.2; 74.2; 1460.2; 2824.2;
2824.2; 1496.7];
 XYd=[xd yd ones(6,1)];
 %

 bl=input('Bottom left ');
 br=input('Bottom right ');
 op=input('Point at one ');
 tr=input('Top right ');
 tl=input('Top left ');
 pp=input('Point at pad ');
 %
 xyp=[bl 1; br 1; op 1; tr 1; tl 1;
pp 1];
 XYp=2*XYd-xyp;
 %
 %METHOD 1
 XYd1L=XYd;
 XYd1L(3:3, :)=[];
 XYd1L(4:5, :)=[];
 XYd1U=XYd;
 XYd1U(2:3, :)=[];
 XYd1U(4:4, :)=[];
 XYp1L=XYp;
 XYp1L(3:3, :)=[];
 XYp1L(4:5, :)=[];
 XYp1U=XYp;
 XYp1U(2:3, :)=[];
 XYp1U(4:4, :)=[];
 AB1L=inv(XYd1L)*XYp1L;
 AB1U=inv(XYd1U)*XYp1U;
 %
 %METHOD 2
 XYd2=XYd;
 XYp2=XYp;
 AB2=pinv(XYd2)*XYp2;
 %
 %METHOD 3
 XYd3L=XYd;
 XYd3L(5:6, :)=[];
 XYd3U=XYd;
 XYd3U(2:3, :)=[];
 XYp3L=XYp;
 XYp3L(5:6, :)=[];
 XYp3U=XYp;
 XYp3U(2:3, :)=[];
 AB3L=pinv(XYd3L)*XYp3L;
 AB3U=pinv(XYd3U)*XYp3U;
 %
 %METHOD 4
 XYd4=[[xd .^ 2] [xd .* yd] [yd .^
2] [xd] [yd] ones(6,1)];
 XYp4=XYd4;
 XYp4(: ,4:6)=XYp;
 AB4=inv(XYd4)*XYp4;
 %
 %METHOD 5
 XYd5=[[xd .^ 2] [xd .* yd] [yd .^
2] [xd] [yd] ones(6,1)];

 Xp=XYp(: ,1:1);
 Yp=XYp(: ,2:2);
 XYp5=[[Xp .^ 2] [Xp .* Yp] [Yp .^
2] [Xp] [Yp] ones(6,1)];
 AB5=inv(XYd5)*XYp5;
end
xyc=input('Check point as column ');
XYc=[xyc; 1];
%
%RESULTS
if XYc(1,1)>XYc(2,1)
 XY1=inv(AB1L')*XYc;
else
 XY1=inv(AB1U')*XYc;
end
XY2=inv(AB2')*XYc;
if XYc(1,1)>XYc(2,1)
 XY3=inv(AB3L')*XYc;
else
 XY3=inv(AB3U')*XYc;
end
xc=xyc(1,1);
yc=xyc(2,1);
XY4=inv(AB4')*[xc^2; xc*yc; yc^2;
xc; yc; 1];
XY5=inv(AB5')*[xc^2; xc*yc; yc^2;
xc; yc; 1];
%
%DISPLAY
XY=[XY1 XY2 XY3 XY4(4:6, :)
XY5(4:6, :)];
format bank;
disp(' ');
XY
disp(' ');
d;

 REFERENCES

[1]R. Lee, W. Moreno, O. Hernandez,
E. Harrold, and D. Whittaker,
"Rapid Prototyping Using Laser
Restructurable VLSI Circuits,"
Proceedings of the 4th
International Workshop on
Rapid System Prototyping, June
1993.

[2]O. J. Hernandez, "A Gate Array
Chip Using Laser
Restructurable VLSI," In
preparation.

[3]R. C. Gonzalez, and R. E. Woods,

Digital Image Processing
(book). Addison-Wesley, 1992

Figure 1 An integrated circuit (IC). The cross shaped marks can
be seen at the corners.

