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Abstract 

This paper presents a high performance architecture 

for the important task of unsupervised data clustering in 

computer vision applications. This architecture is suitable 

for VLSI implementation, as it exploits paradigms of 

massive connectivity like those inspired by neural 
networks, and parallelism and functionality integration 

that can be afforded by emerging nanometer 

semiconductor technologies. By utilizing a “global-

systolic, local-hyper-connected” architectural approach, 

this architecture can be suitable for the processing of real 

time DVD quality video at the highest rate allowed by the 
MPEG-2 standard. This implies a performance 

improvement of 118 times or better than approaches 

using conventional compute platforms. 

1. Introduction 

As new algorithms are developed using a paradigm of 

off-line non real-time implementation, many times there 

is a need to adapt and advance the state of the art of 

hardware architectures to implement such algorithms in a 

real-time manner if they are to truly serve a useful 

purpose in industry and defense, and beyond an academic 

setting. Such is the case with many underlying algorithms 

used in computer vision paradigms. Specifically, of 

interest are high speed hardware architectures for the 

implementation of real time unsupervised data clustering. 

This paper addresses the mapping of the unsupervised 

histogram peak-climbing clustering algorithm to a novel 

high speed architecture suitable for VLSI implementation 

and real-time performance. Specifically, this architecture 

exploits paradigms of massive connectivity like those 

inspired by neural networks, and parallelism and 

functionality integration that can be afforded by emerging 

nanometer semiconductor technologies. Special attention 

is paid to the clustering of high dimensionality sparse data 

sets like those found in the clustering of information rich 

features used for color image segmentation and computer 

vision, and “orders of magnitude” performance increase 

from current implementation on a generic compute 

platform. 

These architectures will aide computer vision 

technology to deliver on its promise of real-time data 

processing and information generation, and these are 

solutions of special interest to industry and defense. An 

example of applications to defense is the automatic 

analysis of scenes for the recognition of targets and foes 

in battlefields. 

Clustering algorithms can be implemented in 

conventional compute platforms, but while these can have 

a high degree of flexibility, they do carry the burden of 

not being tuned specifically for the task of clustering, and 

therefore suffer from a high amount of overhead and are 

inherently inefficient. For instance, the clustering 

algorithm used in this work has been benchmarked as 

requiring 172 mS running on a 2.27 GHz processor with 

virtually infinite memory (RAM – not disk) to execute the 

algorithm. This instance of the algorithm was clustering 

961 vectors of 22 dimensions each, which is equivalent to 

an image resolution of 128 x 128 pixels. This, by no 

means, comes close to the levels of performance 

necessary for real-time video processing and higher 

resolutions. 

2. Some recent related work 

Significant advances in the quality of color image 

segmentation results have recently been reported in the 

literature [1], [2]. This methodology uses high 

dimensionality Multispectral Random Field Texture 

Models [3], [4] and Color Content as features of a sub-

image defined by a sliding window. These features are in 

turn clustered using an unsupervised peek-climbing 

algorithm in the highly multidimensional feature space. 

Once the features are clustered, these clusters are mapped 

back to the spatial domain of the image which results in 

the image segmentation. 

Although some highly talented researchers have 

devoted great efforts to devising hardware architectures to 

accelerate the execution of clustering algorithms, these 

efforts have not fully addressed the high performance 
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demands of real-time high quality color video processing 

[5], [6], [7], [8], [9], [10]. The specific problem of 

conceiving architectures for the very efficient 

unsupervised peak- climbing clustering algorithm has not 

been addressed either. Some of the literature refers to the 

same type of architectural approach [6], [7], [8], [9] while 

other efforts have been mostly focused on aiding the 

performance of Artificial Neural Networks (ANNs) [11], 

[12], [14], [15], [16], [17], [18] or apply to specific 

problem domains [19], and many of the architectures 

reported have been of an analog nature [11], [12], [13], 

[20]. While analog processing tends to necessitate fewer 

components for a given complex operation, the 

technology and the approach suffer from several 

drawbacks. Namely, analog VLSI technology is more 

expensive to manufacture and test, is less accurate than a 

digital implementation, suffers from serious sensitivity to 

noise, and its performance is very susceptible to changes 

in supply voltage and environmental temperature 

conditions. Compensating for all these susceptibilities and 

obtaining a robust design may require added complexity, 

which may hinder the reliable manufacturability of the 

circuitry. 

3. Clustering algorithm 

This section describes the clustering algorithm 

implemented in this work. Given M features f of 

dimensionality N to be clustered, the first step is to 

generate a histogram of N dimensions [21]. This 

histogram is generated by quantizing each dimension 

according to the following equations: 
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for each of the M f(k) feature members, where: 

N = dimensions of the features 

CS(k) = length of the histogram cell in the kth 

dimension 

fmax(k) = maximum value of the kth dimension of the 

M features 

fmin(k) = minimum value of the kth dimension of the M 

features 

Q = total number of quantization levels 

dk = index for a histogram cell in the kth dimension 

associated with a given feature f

Since the dynamic range of the vectors in each 

dimension can be quite different, the cell size for each 

dimension would be different. Hence the cells will be 

hyper-boxes. This provides efficient dynamic range 

management of the data, which will tend to enhance the 

quality and accuracy of the results. Next, the number of 

feature vectors falling in each hyper-box is counted and 

this count is associated with the respective hyper-box 

creating the required histogram. 

After the histogram is generated in the feature space, a 

peak-climbing clustering approach is utilized to group the 

features into distinct clusters. This is done by locating the 

peaks of the histogram. In Figure 1, this peak climbing 

approach is illustrated for a two-dimensional space 

example. 
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Figure 1.  Illustration of the peak climbing approach 
for a two-dimensional feature space example 

The number in each cell (hyper-box) represents a 

hypothetical count for the feature vectors captured by that 

cell. By examining the counts of the 8-neighbors of a 

particular cell, a link is established between that cell and 

the closest cell having the largest count in the 

neighborhood. At the end of the link assignment, each cell 

is linked to one parent cell, but can be parent of more than 

one cell. A peak is defined as being a cell with the largest 

density in the neighborhood, i.e. a cell with no parent. A 

peak and all the cells that are linked to it are taken as a 

distinct cluster representing a mode in the histogram. 

Once the clusters are found, these can be mapped back to 

the original data domain from where the features where 

extracted. Features grouped in the same cluster are tagged 

as belonging to the same category. 

4. High performance data clustering 
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In the clustering algorithm described in [21], the input 

data is an address to a data tensor in memory with 

dimensions JV x JH x N containing Multispectral 

Simultaneous Autoregressive (MSAR) Random Field 

model features from a video frame, and the number of 

quantization levels to be used, which applies to all 

dimensions of the feature space. JV denotes the number of 

windows used to extract the MSAR model features in the 

vertical direction of the video frame, and JH is the number 

of windows in the horizontal. For convenience let us 

denote the total number of feature vector as J = JV x JH.

The input is fixed point data normalized in the interval [-1, 

+1) over the entire JV x JH x N data set. The output of the 

architecture is an address to a JV x JH matrix containing 

the clusters in the video frame space and the number of 

resulting clusters. 

Figure 2 shows the different steps of this 

implementation of the clustering algorithm and the overall 

architecture. The chosen architecture follows a globally 

systolic partition. These steps are the computation of the 

mimum and maximum values of each dimension of the 

feature vectors, finding the cell size CS(k) for each k 

dimension, creating the histogram or assigning bin 

indexes to the data vectors, allocating the vectors to bin 

numbers, link the bins, assign the clusters, group the 

clusters in parallel of determining the number of clusters, 

and mapping the clusters back to the video frame spatial 

domain from the multidimensional MSAR feature space. 

In order to achieve an ultra high speed implementation 

that supports real-time high density video, there are a 

number of design considerations as follows: 

1. Algorithm implementation analysis and benchmarking 

in C to group the major step into phases that can borrow 

budgeted time from each other. 

2. Parallelization of steps whenever possible as in the 

computation of the maximum and minimum values over 

the data set in each dimension. 

3. Using register bank architectures that maximize 

parallel data access. 

4. Dual access to pipeline register banks and a large 

global memory structure for redundant access storage of 

data through the different stages of the computation. 
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Figure 2.  Peak climbing clustering algorithm overall architecture 

5. Architectural details 

This section presents the architectural details of this 

high speed data clustering processor. In all figures, the 

Processing Element (PE) being discussed is bounded by 

dashed lines. Figure 3 shows the PE for the operation of 

finding the minimum and maximum values for each 

dimension of the feature vectors in the data set. N PEs are 
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instantiated in parallel; one for each dimension. The 

operations to find the minimum and maximum values are 

run sequentially, thus making use of a single MIN/MAX 

cell in the PE. Each instantiated PE cycles J times through 

all the values in a given dimension of the feature vectors. 
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Figure 3.  Min-Max processing element

Figure 4 shows the details of the PE to compute the 

Cell Size CS(k) for each dimension. N PEs are 

instantiated in parallel; one for each dimension. Because 

of the high dimensionality of Random Field models, the 

number of quantization levels in each dimension 

necessary for effective and efficient clustering is very 

small; Q = 3 … 8. This allows the division operation of 

Equation 1 to be implemented by a multiplication by the 

inverse of Q stored in a small look-up table (LUT). 

Figure 5 shows the details of the PE to compute 

histogram indexes for each data vector. N PEs are 

instantiated in parallel; one for each dimension, and each 

instantiated PE cycles J times through all the values in a 

given dimension of the feature vectors. Since the possible 

number of quantization levels has been constrained to six, 

the division in the Index PE can be implemented by 

simple parallel restoring division algorithm that has been 

limited to computing only the first three bits of the 

quotient. 

Figure 6 shows the details of the PE to allocate and 

identify a data vector with a given histogram bin. J 

instantiations of this PE are made, which corresponds to 

one instantiation per each possible bin. The purpose of the 

compressor is to count the number of ones from the 

comparators, which corresponds to the density of a given 

bin in the histogram. Table 1 additionally shows the 

specific structure of the compressor tree with full adders 

and half adders capped at J for J = 24882. 

6. Discussion and conclusions 

The rest of the micro-architecture to establish the links 

between the histogram bins, and assign the clusters, so 

that the results can be output, follow a very similar 

structure as Figure 6. The only notable exception is that 

the PE uses a novel computational cell to calculate the 

norm between two 22-dimensional vectors. This cell is 

shown in Figure 7. A global clocking, control, and shared 

memory network tie all the modules together to form the 

complete architecture. 

This paper describes a high performance VLSI 

architecture for the real-time clustering of high 

dimensionality data extracted from video. Processing 

rates suitable for DVD quality video processing at 

MPEG-2 frame rates can be sustained. 
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REG

INDEX

F

MIN

CS

REG

REG

+

-

A/B-

B

A

REG

REGREG

INDEX

F

MIN

CS

REGREG

REGREG

+

-

A/B-

B

A

REGREG

Figure 5.  Index processing element

102



REG

UPDATE

COMP_I

REF_I

BINNED

REG

COMP_I

REF_I

COMP

EQU

NOR

J :

CEIL [LOG2 (J)]

COMPRESSOR

INC

REG

REG

J-1 : 1

MUX

REGREG

UPDATE

COMP_I

REF_I

BINNED

REGREG

COMP_I

REF_I

COMP

EQU

NOR

J :

CEIL [LOG2 (J)]

COMPRESSOR

INC

REGREG

REGREG

J-1 : 1

MUX

Figure 6.  Processing Element used to allocate vectors to histogram bins 

Table 1. Compressor structure 

MODULE 

DESC.

MODULE 

NAME 

OPERATION 

ON PREVIOUS

LAYER/STAGE

NUMBER 

OF

MODULES

INPUTS OUTPUTS MAXIMUM

OUTPUT 

VALUE 

INPUTS INPUTS NONE 24882 24882b 1b 1 

FA fa /3 8294 3b 2b 3 

HA ha_2b /2 4147 2b 3b 6 

HA ha_3b /2, round down 2073 3b 4b 12 

HA ha_4b /2, round up 1037 4b 5b 24 

HA ha_5b /2, round down 518 5b 6b 48 

HA ha_6b /2 259 6b 7b 96 

HA ha_7b /2, round up 130 7b 8b 192 

HA ha_8b /2 65 8b 9b 384 

HA ha_9b /2, round down 32 9b 10b 768 

HA ha_10b /2 16 10b 11b 1536 

HA ha_11b /2 8 11b 12b 3072 

HA ha_12b /2 4 12b 13b 6144 

HA ha_13b /2 2 13b 14b 12288 

HA ha_14b /2 1 14b 15b 24576 

HA ha_15b /2, round up 1 15b 16b 48705* 
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Figure 7.  Neighbor detector

By using a top level quasi-systolic architectural 

partitioning scheme and extensive connectivity at the 

lower levels, the performance is improved 118 times or 

more than what can be achieved in a generic compute 

platform. This architecture can be used in many military, 

industrial, and commercial applications that require real-

time intelligent machine processing of high quality video. 
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