
High Performance VLSI Architecture for Data Clustering

Targeted at Computer Vision

Orlando J. Hernandez

Department Electrical and Computer Engineering

The College of New Jersey

hernande@tcnj.edu

Abstract

This paper presents a high performance architecture

for the important task of unsupervised data clustering in

computer vision applications. This architecture is suitable

for VLSI implementation, as it exploits paradigms of

massive connectivity like those inspired by neural
networks, and parallelism and functionality integration

that can be afforded by emerging nanometer

semiconductor technologies. By utilizing a “global-

systolic, local-hyper-connected” architectural approach,

this architecture can be suitable for the processing of real

time DVD quality video at the highest rate allowed by the
MPEG-2 standard. This implies a performance

improvement of 118 times or better than approaches

using conventional compute platforms.

1. Introduction

As new algorithms are developed using a paradigm of

off-line non real-time implementation, many times there

is a need to adapt and advance the state of the art of

hardware architectures to implement such algorithms in a

real-time manner if they are to truly serve a useful

purpose in industry and defense, and beyond an academic

setting. Such is the case with many underlying algorithms

used in computer vision paradigms. Specifically, of

interest are high speed hardware architectures for the

implementation of real time unsupervised data clustering.

This paper addresses the mapping of the unsupervised

histogram peak-climbing clustering algorithm to a novel

high speed architecture suitable for VLSI implementation

and real-time performance. Specifically, this architecture

exploits paradigms of massive connectivity like those

inspired by neural networks, and parallelism and

functionality integration that can be afforded by emerging

nanometer semiconductor technologies. Special attention

is paid to the clustering of high dimensionality sparse data

sets like those found in the clustering of information rich

features used for color image segmentation and computer

vision, and “orders of magnitude” performance increase

from current implementation on a generic compute

platform.

These architectures will aide computer vision

technology to deliver on its promise of real-time data

processing and information generation, and these are

solutions of special interest to industry and defense. An

example of applications to defense is the automatic

analysis of scenes for the recognition of targets and foes

in battlefields.

Clustering algorithms can be implemented in

conventional compute platforms, but while these can have

a high degree of flexibility, they do carry the burden of

not being tuned specifically for the task of clustering, and

therefore suffer from a high amount of overhead and are

inherently inefficient. For instance, the clustering

algorithm used in this work has been benchmarked as

requiring 172 mS running on a 2.27 GHz processor with

virtually infinite memory (RAM – not disk) to execute the

algorithm. This instance of the algorithm was clustering

961 vectors of 22 dimensions each, which is equivalent to

an image resolution of 128 x 128 pixels. This, by no

means, comes close to the levels of performance

necessary for real-time video processing and higher

resolutions.

2. Some recent related work

Significant advances in the quality of color image

segmentation results have recently been reported in the

literature [1], [2]. This methodology uses high

dimensionality Multispectral Random Field Texture

Models [3], [4] and Color Content as features of a sub-

image defined by a sliding window. These features are in

turn clustered using an unsupervised peek-climbing

algorithm in the highly multidimensional feature space.

Once the features are clustered, these clusters are mapped

back to the spatial domain of the image which results in

the image segmentation.

Although some highly talented researchers have

devoted great efforts to devising hardware architectures to

accelerate the execution of clustering algorithms, these

efforts have not fully addressed the high performance

0-7803-8865-8/05/$20.00 ©2005 IEEE. 99

demands of real-time high quality color video processing

[5], [6], [7], [8], [9], [10]. The specific problem of

conceiving architectures for the very efficient

unsupervised peak- climbing clustering algorithm has not

been addressed either. Some of the literature refers to the

same type of architectural approach [6], [7], [8], [9] while

other efforts have been mostly focused on aiding the

performance of Artificial Neural Networks (ANNs) [11],

[12], [14], [15], [16], [17], [18] or apply to specific

problem domains [19], and many of the architectures

reported have been of an analog nature [11], [12], [13],

[20]. While analog processing tends to necessitate fewer

components for a given complex operation, the

technology and the approach suffer from several

drawbacks. Namely, analog VLSI technology is more

expensive to manufacture and test, is less accurate than a

digital implementation, suffers from serious sensitivity to

noise, and its performance is very susceptible to changes

in supply voltage and environmental temperature

conditions. Compensating for all these susceptibilities and

obtaining a robust design may require added complexity,

which may hinder the reliable manufacturability of the

circuitry.

3. Clustering algorithm

This section describes the clustering algorithm

implemented in this work. Given M features f of

dimensionality N to be clustered, the first step is to

generate a histogram of N dimensions [21]. This

histogram is generated by quantizing each dimension

according to the following equations:

() () ()
N,,2,1k;

Q

kfkf
kCS minmax =

−
= (1)

() ()
() N,,2,1k;1
kCS

kfkf
INTd min

k =+
−

=

 (2)

for each of the M f(k) feature members, where:

N = dimensions of the features

CS(k) = length of the histogram cell in the kth

dimension

fmax(k) = maximum value of the kth dimension of the

M features

fmin(k) = minimum value of the kth dimension of the M

features

Q = total number of quantization levels

dk = index for a histogram cell in the kth dimension

associated with a given feature f

Since the dynamic range of the vectors in each

dimension can be quite different, the cell size for each

dimension would be different. Hence the cells will be

hyper-boxes. This provides efficient dynamic range

management of the data, which will tend to enhance the

quality and accuracy of the results. Next, the number of

feature vectors falling in each hyper-box is counted and

this count is associated with the respective hyper-box

creating the required histogram.

After the histogram is generated in the feature space, a

peak-climbing clustering approach is utilized to group the

features into distinct clusters. This is done by locating the

peaks of the histogram. In Figure 1, this peak climbing

approach is illustrated for a two-dimensional space

example.

40 28 12

15 50 30 5 1

10 25 4 2 1 4

4 1 20 8 3 1

3 10 5

15 7 5 5 2

35 45 20 8

18 80 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

Figure 1. Illustration of the peak climbing approach
for a two-dimensional feature space example

The number in each cell (hyper-box) represents a

hypothetical count for the feature vectors captured by that

cell. By examining the counts of the 8-neighbors of a

particular cell, a link is established between that cell and

the closest cell having the largest count in the

neighborhood. At the end of the link assignment, each cell

is linked to one parent cell, but can be parent of more than

one cell. A peak is defined as being a cell with the largest

density in the neighborhood, i.e. a cell with no parent. A

peak and all the cells that are linked to it are taken as a

distinct cluster representing a mode in the histogram.

Once the clusters are found, these can be mapped back to

the original data domain from where the features where

extracted. Features grouped in the same cluster are tagged

as belonging to the same category.

4. High performance data clustering

100

In the clustering algorithm described in [21], the input

data is an address to a data tensor in memory with

dimensions JV x JH x N containing Multispectral

Simultaneous Autoregressive (MSAR) Random Field

model features from a video frame, and the number of

quantization levels to be used, which applies to all

dimensions of the feature space. JV denotes the number of

windows used to extract the MSAR model features in the

vertical direction of the video frame, and JH is the number

of windows in the horizontal. For convenience let us

denote the total number of feature vector as J = JV x JH.

The input is fixed point data normalized in the interval [-1,

+1) over the entire JV x JH x N data set. The output of the

architecture is an address to a JV x JH matrix containing

the clusters in the video frame space and the number of

resulting clusters.

Figure 2 shows the different steps of this

implementation of the clustering algorithm and the overall

architecture. The chosen architecture follows a globally

systolic partition. These steps are the computation of the

mimum and maximum values of each dimension of the

feature vectors, finding the cell size CS(k) for each k

dimension, creating the histogram or assigning bin

indexes to the data vectors, allocating the vectors to bin

numbers, link the bins, assign the clusters, group the

clusters in parallel of determining the number of clusters,

and mapping the clusters back to the video frame spatial

domain from the multidimensional MSAR feature space.

In order to achieve an ultra high speed implementation

that supports real-time high density video, there are a

number of design considerations as follows:

1. Algorithm implementation analysis and benchmarking

in C to group the major step into phases that can borrow

budgeted time from each other.

2. Parallelization of steps whenever possible as in the

computation of the maximum and minimum values over

the data set in each dimension.

3. Using register bank architectures that maximize

parallel data access.

4. Dual access to pipeline register banks and a large

global memory structure for redundant access storage of

data through the different stages of the computation.

IN
MEMORY/

REGISTERED

INPUT

DATA

FRAME

FIND CS/

DIMENSION

CREATE

HISTO-

GRAM

(INDEXES)

REG

BANK

ALLOCATE

VECTORS

TO HISTO-

GRAM BINS

REG

BANK

REG

BANK

REG

BANK

REG

BANK

MAKE

LINKS

REG

BANK

ASSIGN

CLUSTERS

REG

BANK

GROUP

CLUSTERS

REG

BANK

FIND

NUMBER

OF

CLUSTERS

REG

MAP BACK

TO

SPATIAL

DOMAIN

IN

MEMORY/

REGISTERED

OUTPUT
DATA

PHASE I PHASE II

PHASE III

||

PHASE IV

FIND

MIN/MAX

PER

DIMENSION

IN
MEMORY/

REGISTERED

INPUT

DATA

FRAME

FIND CS/

DIMENSION

FIND CS/

DIMENSION

CREATE

HISTO-

GRAM

(INDEXES)

CREATE

HISTO-

GRAM

(INDEXES)

REG

BANK

REG

BANK

ALLOCATE

VECTORS

TO HISTO-

GRAM BINS

REG

BANK

REG

BANK

REG

BANK

REG

BANK

REG

BANK

REG

BANK

REG

BANK

REG

BANK

MAKE

LINKS

REG

BANK

REG

BANK

ASSIGN

CLUSTERS

REG

BANK

REG

BANK

GROUP

CLUSTERS

REG

BANK

REG

BANK

FIND

NUMBER

OF

CLUSTERS

REGREG

MAP BACK

TO

SPATIAL

DOMAIN

IN

MEMORY/

REGISTERED

OUTPUT
DATA

PHASE I PHASE II

PHASE III

||

PHASE IV

FIND

MIN/MAX

PER

DIMENSION

FIND

MIN/MAX

PER

DIMENSION

Figure 2. Peak climbing clustering algorithm overall architecture

5. Architectural details

This section presents the architectural details of this

high speed data clustering processor. In all figures, the

Processing Element (PE) being discussed is bounded by

dashed lines. Figure 3 shows the PE for the operation of

finding the minimum and maximum values for each

dimension of the feature vectors in the data set. N PEs are

101

instantiated in parallel; one for each dimension. The

operations to find the minimum and maximum values are

run sequentially, thus making use of a single MIN/MAX

cell in the PE. Each instantiated PE cycles J times through

all the values in a given dimension of the feature vectors.

IN

MEMORY/

REGISTERED

INPUT

DATA

FRAME

MAX

REG

MIN/MAX

CELL

REG

MIN

REFB

REFA

A

REFS
IN

MEMORY/

REGISTERED

INPUT

DATA

FRAME

MAX

REGREG

MIN/MAX

CELL

MIN/MAX

CELL

REGREG

MIN

REFB

REFA

A

REFS

Figure 3. Min-Max processing element

Figure 4 shows the details of the PE to compute the

Cell Size CS(k) for each dimension. N PEs are

instantiated in parallel; one for each dimension. Because

of the high dimensionality of Random Field models, the

number of quantization levels in each dimension

necessary for effective and efficient clustering is very

small; Q = 3 … 8. This allows the division operation of

Equation 1 to be implemented by a multiplication by the

inverse of Q stored in a small look-up table (LUT).

Figure 5 shows the details of the PE to compute

histogram indexes for each data vector. N PEs are

instantiated in parallel; one for each dimension, and each

instantiated PE cycles J times through all the values in a

given dimension of the feature vectors. Since the possible

number of quantization levels has been constrained to six,

the division in the Index PE can be implemented by

simple parallel restoring division algorithm that has been

limited to computing only the first three bits of the

quotient.

Figure 6 shows the details of the PE to allocate and

identify a data vector with a given histogram bin. J

instantiations of this PE are made, which corresponds to

one instantiation per each possible bin. The purpose of the

compressor is to count the number of ones from the

comparators, which corresponds to the density of a given

bin in the histogram. Table 1 additionally shows the

specific structure of the compressor tree with full adders

and half adders capped at J for J = 24882.

6. Discussion and conclusions

The rest of the micro-architecture to establish the links

between the histogram bins, and assign the clusters, so

that the results can be output, follow a very similar

structure as Figure 6. The only notable exception is that

the PE uses a novel computational cell to calculate the

norm between two 22-dimensional vectors. This cell is

shown in Figure 7. A global clocking, control, and shared

memory network tie all the modules together to form the

complete architecture.

This paper describes a high performance VLSI

architecture for the real-time clustering of high

dimensionality data extracted from video. Processing

rates suitable for DVD quality video processing at

MPEG-2 frame rates can be sustained.

REG

CS

MAX

MIN

Q

Q_inv

REG

REG

Q_inv

LUT

+

-

X-
+

1 REGREG

CS

MAX

MIN

Q

Q_inv

REGREG

REGREG

Q_inv

LUT

Q_inv

LUT

+

-

X-
+

1

Figure 4. Cell size CS(k) processing element

REG

INDEX

F

MIN

CS

REG

REG

+

-

A/B-

B

A

REG

REGREG

INDEX

F

MIN

CS

REGREG

REGREG

+

-

A/B-

B

A

REGREG

Figure 5. Index processing element

102

REG

UPDATE

COMP_I

REF_I

BINNED

REG

COMP_I

REF_I

COMP

EQU

NOR

J :

CEIL [LOG2 (J)]

COMPRESSOR

INC

REG

REG

J-1 : 1

MUX

REGREG

UPDATE

COMP_I

REF_I

BINNED

REGREG

COMP_I

REF_I

COMP

EQU

NOR

J :

CEIL [LOG2 (J)]

COMPRESSOR

INC

REGREG

REGREG

J-1 : 1

MUX

Figure 6. Processing Element used to allocate vectors to histogram bins

Table 1. Compressor structure

MODULE

DESC.

MODULE

NAME

OPERATION

ON PREVIOUS

LAYER/STAGE

NUMBER

OF

MODULES

INPUTS OUTPUTS MAXIMUM

OUTPUT

VALUE

INPUTS INPUTS NONE 24882 24882b 1b 1

FA fa /3 8294 3b 2b 3

HA ha_2b /2 4147 2b 3b 6

HA ha_3b /2, round down 2073 3b 4b 12

HA ha_4b /2, round up 1037 4b 5b 24

HA ha_5b /2, round down 518 5b 6b 48

HA ha_6b /2 259 6b 7b 96

HA ha_7b /2, round up 130 7b 8b 192

HA ha_8b /2 65 8b 9b 384

HA ha_9b /2, round down 32 9b 10b 768

HA ha_10b /2 16 10b 11b 1536

HA ha_11b /2 8 11b 12b 3072

HA ha_12b /2 4 12b 13b 6144

HA ha_13b /2 2 13b 14b 12288

HA ha_14b /2 1 14b 15b 24576

HA ha_15b /2, round up 1 15b 16b 48705*

103

& NEIGHBOR

d1 (REF)

b

a

| a – b | 1 ?

d1 (COMP)

d22 (REF)

b

a

| a – b | 1 ?

d22 (COMP)

& NEIGHBOR

d1 (REF)

b

a

| a – b | 1 ?

d1 (COMP)

d22 (REF)

b

a

| a – b | 1 ?

d22 (COMP)

Figure 7. Neighbor detector

By using a top level quasi-systolic architectural

partitioning scheme and extensive connectivity at the

lower levels, the performance is improved 118 times or

more than what can be achieved in a generic compute

platform. This architecture can be used in many military,

industrial, and commercial applications that require real-

time intelligent machine processing of high quality video.

7. References

[1] A. Khotanzad and O. J. Hernandez, "Color Image Retrieval

Using Multispectral Random Field Texture Model & Color

Content Features," Pattern Recognition Journal, vol. 36, no. 8,

August 2003, pp. 1679-1694.

[2] O. J. Hernandez, "Color Image Retrieval Using

Multispectral Random Field Texture Model and Color Content

Features," Ph.D. Dissertation, Southern Methodist University,

May 2002.

[3] J. W. Bennett and A. Khotanzad, "Multispectral Random

Field Models for Synthesis and Analysis of Color Images,"

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.

20, no. 3, March 1998, pp. 327-332.

[4] J. W. Bennett, "Modeling and Analysis of Gray Tone,

Color, and Multispectral Texture Images by Random Field

Models and Their Generalizations," Ph.D. Dissertation,

Southern Methodist University, May 1997.

[5] Y. Miyanaga, M. Teraoka, and K. Tochinai, "Parallel and

Adaptive Clustering Method Suitable for a VLSI System,"

Proceedings – IEEE International Symposium on Circuits and

Systems, vol. 1, no. 1, June 11-14 1991, pp. 356-359.

[6] M.-F. Lai, C.-H. Hsieh, and Y.-P. Wu, "A VLSI

Architecture for Clustering Analyzer Using Systolic Arrays,"

Proceedings of the 12th IASTED International Conference on

Applied Informatics, May 18-20 1994, p. 260.

[7] M.-F. Lai, Y.-P. Wu, C.-H. Hsieh, "Design of Clustering

Analyzer Based on Systolic Array Architecture," Proceedings of

the 1994 IEEE Asia-Pacific Conference on Circuits and Systems,

December 5-8 1994, p. 67-72.

[8] M.-F. Lai, M. Nakano, Y.-P. Wu, and C.-H. Hsieh, "VLSI

Design of Clustering Analyzer Using Systolic Arrays," IEE

Proceedings: Computers and Digital Techniques, vol. 142, no. 3,

May 1995, pp. 185-192.

[9] M.-F. Lai and C.-H. Hsieh, "A Novel VLSI Architecture

for Clustering Analysis, "Proceedings of the 1996 IEEE Asia

Pacific Conference on Circuits and Systems, November 18-21

1996, pp. 484-487.

[10] R. Doallo and E. L. Zapata, "A VLSI Systolic Architecture

for Solving DBT-Transformed Fuzzy Clustering Problems of

Arbitrary Size," Parallel Computing, vol. 13, no. 3, March 1990,

pp. 321-335.

[11] T. Serrano-Gotarredona and B. Linarea-Barranco, "A Real-

Time Clustering Microchip Neural Engine," IEEE Trans. on

Very Large Integration (VLSI) Systems, vol. 4, no. 2, June 1996,

pp. 195-209.

[12] J. Sitte, T. Körner, and U. Rückert, "An Analog-Current

Mode Local Cluster Neural Net," Proceedings of the 1997 IEEE

6th International Conference on Emerging Technologies and

Factory Automation, September 9-12 1997, pp. 237-242.

[13] F. Perez and C. Koch, "Toward Color Image Segmentation

in Analog VLSI: Algorithm and Hardware," International

Journal of Computer Vision, vol. 12, no. 1, February 1994, pp.

17-42.

[14] D. D. Zhang, "System Design Methodology for Fuzzy

Clustering Neural Networks," Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, vol.

2, October 14-17 1996, pp. 1062-1066.

[15] D. Zhang, M. Kamel, and M. I. Elmasry, "Fuzzy Clustering

Neural Network System Design and Implementation," Midwest

Symposium on Circuits and Systems, vol. 2, no 2, August 3-5

1994, pp. 1381-1384.

[16] D. Zhang and S. K. Pal, "A Fuzzy Clustering Neural

Networks (FCNs) System Design Methodology," IEEE Trans.

on Neural Networks, vol. 11, no 5, September 2000, pp. 1174-

1177.

[17] P. Poiré, Y. Savaria, H. Daniel, M.-A. Cantin, and Y.

Blaquière, "Hardware/Software Codesign of a Fuzzy ART

Neural Clusterer: The Benefits of Configurable Computing,"

Proceedings of SPIE - The International Society for Optical

Engineering, vol. 3526, November 1998, pp. 90-96.

[18] A. Granger, Y. Blaquière, Y. Savaria, M.-A. Cantin, and P.

Lavoie, "A VLSI Architecture for Fast Clustering with Fuzzy

ART Neural Networks," Proceedings of International Workshop

on Neural Networks for Identification, Control, Robotics, and

Signal/Image Processing, NICROSP, August 1996, pp. 117-125.

[19] M.-A. Cantin, Y. Blaquière, Y. Savaria, A. Granger, and P.

Lavoie, "Implementation of the Fuzzy ART Neural Network for

Fast Clustering of Radar Pulses," Proceedings - IEEE

International Symposium on Circuits and Systems, vol. 2, May

1998, pp. 458-461.

[20] J. Sitte, T. Körner, and U. Rückert, "Local Cluster Neural

Net Analog VLSI Design," Neurocomputing, no. 19, 1998, pp.

185-197.

[21] A. Khotanzad and A. Bouarfa, "Image Segmentation by a

Parallel, Non-Parametric Histogram Based Clustering

Algorithm," Pattern Recognition Journal, vol. 23, no. 9,

September 1990, pp. 961-963.

104

