M The College of New Jersey

“A Verilog Overview”

by
Orlando J. Hernandez, Ph.D.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

Presentation Overview

= Introduction to Verilog — Part |
= Introduction to Verilog — Part 11
= AND, OR, HALF ADDER, FULL ADDER

= Introduction to Verilog — Part Il
= ALU Design

= Control and Data Path Organization
= Finite State Machines, Digital Filter

s Q&A Sessions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

INTRODUCTION TO Verilog
PART 1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

Design Automation

= Need To Keep With Rapid Changes,
Electronic Products Have To Be
Designed Extremely Quickly

= Electronic Design Automation (EDA)
= Design Entry
= Simulation
= Synthesis
= Design Validation & Test

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

Design Automation. Cont...

= Design Entry
= Schematic Capture

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

Design Automation. Cont...

= Design Entry - Textual Form:

= Verilog

= VHDL (VHSIC Hardware Description
Language)

= VHSIC (Very High Speed Integrated
Circuits)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

Design Automation. Cont...

= Design Entry - Textual Form:

module and_2 (X, Y, 2);
input X, Y;
output Z;

assign Z =X &Y,
endmodule

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

Introduction To Verilog

= Verilog Is an Industry Standard
Language to Describe Hardware From
the Abstract to Concrete Level.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

BRIEF HISTORY OF Verilog

= Began as a proprietary HDL promoted by Cadence
Design Systems.

= Cadence transferred control of Verilog to a
consortium of companies and universities known as
Open Verilog International (OVI).

= Verilog is an IEEE Standard (IEEE Standard 1364-
1995).

= Verilog continues to be extended and upgraded (IEEE
Standard 1364-2000, System Verilog).

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

MOTIVATION

= Need a Method to Quickly Design,
Implement, Test and Document
Increasingly Complex Digital Systems.

= Schematic and Boolean Equations
Inadequate for Million-Gate ICs.

= Design Portability

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 10

ﬁl The College of New Jersey

What is Verilog?

= A Design entry language

= A Simulation modeling language.
= A Verification language.

= A Standard language.

= As simple or complex as required.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 11

ﬁl The College of New Jersey

How is Verilog Used?

= For Design Specification (“Specify”) Specify
= For Design Entry (“Capture”) Capture
= For Design Simulation (“Verify”) Verify
= For Design Documentation (“Formalize”) Formalize
= As an Alternate to Schematics Implement

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 12

@ The College of New Jersey

Design Process (e. g. for FPGAs)

= Verilog Can Be Used for Both Design
and Test Development

Design Entry <— Test Development
g ! !
Synthesis [+—{ Functional Simulation
;
Device Mapping > Timing Simulation
:
Device

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 13

ﬁl The College of New Jersey

When Should Verilog Be Used?

= Verilog Is highly beneficial to use as a
structured, top down approach to
design.

= Verilog makes it easy to build, use, and
reuse libraries of circuit elements.

= Verilog can greatly improve your
chances of moving into more advanced
tools and design flows.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

14

Advantages of Verilog

The Ability to Code the Behavior and to
Synthesize an Actual Circuit.

Power and Flexibility

Device (specific FPGA) Independent Design

Technology (specific silicon process)
Independent Design

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

15

@ The College of New Jersey

Advantages of Verilog Cont...

= Portability Among Tools and Devices

s Fast Switch Level Simulations

= Quick Time to Market and Low Cost

= Industry Standard

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 16

@I The College of New Jersey
‘ Getting Started with Verilog

= Its Easy To Get Started With Verilog,
But It Can Be Difficult To Master It.

= To Begin With, A Subset of The
_anguage Can Be Learned To Write
Useful Models.

= Later, More Complex Features Can Be
_earned To Implement Complex
Circuits, Libraries, And APIs.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 17

@ The College of New Jersey

A First look at Verilog

= Lets start with a simple Combinational
circuit: an 8-bit Comparator.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 18

@ The College of New Jersey

An 8 Bit Comparator

= Comparator Specifications:
= Two 8-bit inputs
= 1-bit Output

= Output is 1 if the inputs match or O if they
differ.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 19

@ The College of New Jersey

An 8 Bit Comparator

Comparator

A[8]

B[8] EQ

O(1,2|3|4|5
Al1 0 1 1 0 0 1 1
o 1 1 0 0 1 1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

o
=

20

@ The College of New Jersey

Comparator Verilog Source Code

// Eight-bit Comparator
module compare (A, B, EQ)
iInput [7:0] A, B;
output EQ;

assign EQ = (A == B);
endmodule

> Define the inputs and outputs - the ports of the circuit
> Define the function of the circuit

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 21

ﬁl The College of New Jersey

What is a module

= Every Verilog design description has at least
one module construct.

= A large design has many modules and are
connected to form the complete circuit.

= The module port declarations describe the
circuit as It appears from “outside”- from
perspective of its input and output interfaces.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 22

@ The College of New Jersey

What is a module?

module compare (A, B, EQ)
iInput [7:0] A, B;
output EQ;

= The module and port declarations includes a name,
compare, and port direction statements defining all
the inputs and outputs of the module.

s The Rest of the module Describes the Actual Function.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 23

@ The College of New Jersey

What is a module?

assign EQ = (A == B);
endmodule

= Before the keyword endmodule is found
the actual functional description of the
comparator.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 24

ﬁl The College of New Jersey

Data Types

= Verilog’s high level data types allow
data to be represented in much the
same way as In high-level programming
languages.

= A data type Is an abstract
representation of stored data.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 25

@ The College of New Jersey

Data Types

= These data types might represent
individual wires In a circuit, or a
collection of wires.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 26

@ The College of New Jersey

Data Types

= Basic Data Types

n Nets
wire, wand, tri, wor
Continuously driven
Gets new value when driver changes
LHS of continuous assignment
tri [15:0] data;
// unconditional
assign data[15:0] = data_in;
// conditional
assign data[15:0] = enable ? data_in : 16'bz;
= Registers
Reg
Represents storage
Always stores last assigned value
LHS of an assignment in a procedural block
reg signal;
@(posedge clock) signal = 1'b1;
// possitive edge
@(reset) signal = 1'b0; // event (both edges)

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 27

ﬁl The College of New Jersey

Some Data Types

ata Type Values Examples

Bit 1, '0",'x', 'z Q= 1'b1;

Array of bits "101001" Data[5:0] = 6’b101001;
Boolean Use Bit EQ =1'b1;// True
Integer -2,-1,0,1,2,3 C=c+2;

Real 1.0, -1.0E5 V1=V2/5.3;

Time ‘timescale 1ns/1ps #6 Q = 1’b1;

Register Single or array of bits

Character Use 8-bit register

String

Use register of length 8 x the # of characters

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 28

ﬁl The College of New Jersey

Design Units

= Design units are a concept that provide
advanced configuration management
capabillities.

= Design units are modules of Verilog that
can be compiled separately and stored
In a library.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 29

ﬁl The College of New Jersey

Library Design unit

= A Library Is a collection of commonly
used modules to be used globally
among different design units.

= Library Is identified with
compiler/simulator command line
switches.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 30

ﬁl The College of New Jersey

Levels of Abstraction (Styles)

= Verilog supports many possible styles of
design description.

= These styles differ primarily in how
closely they relate to the underlying
hardware.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 31

ﬁl The College of New Jersey

Levels of Abstraction (Styles)

s Levels of Abstraction refers to how far
your design description Is from an
actual hardware realization.

s The three main levels of abstraction
are:

= Behavior
= Dataflow
s Structure

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 32

ﬁl The College of New Jersey

Levels of Abstraction (Styles)

: Performance Specification
Behavior Test Benches
Sequential Description
State Machines
Register Transfers
Dataflow Selected Assignments
Arithmetic Operation
Boolean Equations
Hierarchy
Structure Physical Information

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 33

ﬁl The College of New Jersey

Behavioral Modeling

= The Highest Level of Abstraction
Supported in Verilog.

= The Behavior Approach Describes the
Actual Behavior of Signals Inside the
Component.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 34

ﬁl The College of New Jersey

Verilog Timing Issues

= The Concept of Time Is the Critical
Distinction Between Behavioral
Descriptions and Low Level
Descriptions.

= The Concept to Time May Be Expressed
Precisely, With Actual Delays Between
Related Events

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 35

El\h' [The College of New Jersey

An Example of Behavioral Modeling: A half adder

sum

carry

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

36

@ The College of New Jersey

half adder

= Half Adder
= Inputs a, b : 1 bit each.
= Output Sum, Carry : 1 bit each.

Z D
—

carry

Figure 1-1 Half adder circuit

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 37

@ The College of New Jersey

Verilog Code for half_adder

// Half Adder

module half_adder (a, b, sum, carry);
Input a, b;
output sum, carry;

reg sum, carry;

always @ (a or b) begin
sum = a ™ b;
carry = a & b;
end
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 38

@ The College of New Jersey

INTRODUCTION TO Verilog
PART 11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 39

ﬁl The College of New Jersey

Dataflow Modeling

s The dataflow level of abstraction is often
called Register Transfer Language (RTL).

= Some behavioral modeling can also be called
RTL.

= The dataflow level of abstraction describes

how information is passed between registers
In the circuit.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 40

ﬁl The College of New Jersey

Concurrent and Sequential Verilog

= Verilog Allows Both Concurrent and
Seqguential Statements to Be Entered.

= The Difference Between Concurrent and
Sequential Statements Must Be Known
for Effective Use of the Language.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 41

ﬁl The College of New Jersey

Concurrent Verilog

s All Statements Iin the Concurrent Area
Are Executed at the Same Time.

= There Is No Significance to the Order In
Which Concurrent Statements Occur.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 42

@ The College of New Jersey

Concurrent Verilog

—> Statement

—> Statement

L » Statement

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 43

E The College of New Jersey

Example of Concurrent Veilog

Full Adder

Sum

C out

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

44

@ The College of New Jersey

Full Adder circuit

I \ 1
enanilps { i sum
)
.

S2
s3 ! c_out

c in

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 45

Verilog code for Full Adder

// Full Adder Using Signal Assignment Instructions
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;

output sum, c_out;

wire sl, s2, s3;

assign sl =a ™ b;

assign s2 =sl & c_in;

assign s3 =a & b;

assign sum = s1 ™ c_in;

assign c_out = s2 | s3;
endmodule

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

@ The College of New Jersey

46

ﬁl The College of New Jersey

Verilog code for Full Adder

= The assign expressions are all
concurrent signal assignment
statements. All the statements are

executed at the same time.
assign sl = a ™ b;
assign s2 =sl & c_in;
assign s3 =a & b;
assign sum =sl1 ™ c_in;
assign c_out = s2 | s3;

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 47

ﬁl The College of New Jersey

Verilog code for Full Adder

= The simulator evaluates all the assign
expressions, and then applies the
results to the signals.

= Once the simulator has applied the
results it waits for one of the signal to
change and it reevaluates all the
expressions again.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 48

ﬁl The College of New Jersey

Verilog code for Full Adder

= This cycle will continue until the
simulation Is completed.

= This Is called “event driven simulation”.

= It IS more computationally efficient than
time driven simulation.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 49

@ The College of New Jersey

Wires

= In the full adder Verilog code we came across “wire”.

= SO what are “wires”?

= Wires Are Used to Carry Data From Place to Place in a
Verilog Design Description.

= Wires in Verilog Are Similar to Wires in a Schematic.

= Wires are internal to a module.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 50

ﬁl The College of New Jersey

Sequential Verilog

= Sequential Statements Are Executed
One After the Other in the Order That
They Appear.

= Example of Sequential Statement:
Always.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 51

@ The College of New Jersey

Sequential Verilog

Begin

l

Statement

!

Statement

'

Statement

!

End

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

52

ﬁl The College of New Jersey

Always Construct

= The Always construct is the primary means to
describe sequential operations.

= Always starts with the keyword a/ways, then
begin, and ends with the keyword end.

= The whole a/ways construct itself is treated as
a concurrent statement.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 53

@ The College of New Jersey

Always Statement

= The always construct consists of three
parts

= Sensitivity List
= Declaration Part
s Statement Part

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 54

@ The College of New Jersey

Syntax of Always Statement

module module_name (... ports ...);

always @ (sensitivity_list)
begin : block _name
local declaration;
sequential statement;
sequential statement;
end
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 55

@ The College of New Jersey

Always Example

module nand2 (a, b, c);
Input a, b;
output c;

reg c;

always @ (a or b)

begin : nand2_always_block
reg temp;
temp = ~(a & b);
If (temp == 1'b1l) #5 ¢ = temp;
else if (temp == 1'b0) #6 ¢ = temp;

end

endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 56

@ The College of New Jersey

Example Description

= The always sensitivity list enumerates
exactly which signals causes the block

to execute.

always @ (a or b)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

57

@ The College of New Jersey

Example Description

= The declarative part Is used to declare
local variables or constants that can be
used In the block.

reg temp;

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY o8

@ The College of New Jersey

Example Description

= Variables are temporary storage areas
similar to variables in software
programming languages.

reg temp;

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 59

ﬁl The College of New Jersey

Use of Sequential Statements

= Sequential Statements Exist Inside the
Always Statements As Well As in Sub
Programs.

= The Sequential Statements Are:
If case forever repeat
while for wait fork/join

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 60

@ The College of New Jersey

if Statements

s The IF statement starts with the
keyword /fand ends with the keyword
end.

If (x <10) begin
a=nDh;
end

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 61

ﬁl The College of New Jersey

if Statements

= There are also two optional clauses

If (day == Sunday) begin
= else if clause weekend = true;

end
= else clause else if (day == Saturday) begin

weekend = true;
end
else begin

weekday = true;
end

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 62

@ The College of New Jersey

if Statements

= The If statement can have multiple else
If statement parts but only one else
statement part.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 63

ﬁl The College of New Jersey

Case Statement

s [he Case statement Is used whenever a

single expression value can be used to
select between a number of actions.

= A Case statement consists of the
keyword case followed by an operator

expression, and ended with an
endcase keyword.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 64

ﬁl The College of New Jersey

Case Statement

= The expression will either return a value
that matches one of the choices in a
statement part or match a default
clause.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 65

@ The College of New Jersey

Case Statement Example

reg [1:0] bit_vec;

case bit_vec
2’b00 :
return = 0;
2’b01 :
return = 1;
2’b10:
return = 2;
2’b11 :
return = 3;

endcase

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 66

ﬁl The College of New Jersey

Loop Statements

= The loop statement is used whenever an
operation needs to be repeated.

= Loop statements are implemented in three
ways

= repeat condition loop statement
= While condition loop statement
= forcondition loop statement

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 67

ﬁl The College of New Jersey

Loop Statements (repeat)

= The repeat condition Loop statement
will loop as many times as the condition
expression.

repeat (flag) begin
day = get _next_day (day);
end

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 68

ﬁl The College of New Jersey

Loop Statements (while)

= The whi/e condition Loop statement
will loop as long as the condition
expression Is TRUE.

while (day == weekday) begin
day = get next_day (day);
end

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 69

ﬁl The College of New Jersey

Loop Statements (for loop)

for 1=1;1<=10;1=1+1) begin
|_squared[i] = I”*i;
end

= This loop will execute 10 times
whenever execution begins and Its
function Is to calculate squares from 1
to 10 and insert them Into |_squared
memory.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 70

El\h' | The College of New Jersey

Wait Statement

= The wart statement allows to suspend
the sequential execution based on a
conditional expression.

= wartuntil an expression is true.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 71

ENJ' | The College of New Jersey

Wait Statement

= The wart conditional expression clause
will suspend execution of the process
until the expression returns a true
value.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

72

ﬁl The College of New Jersey

Structural Verilog

= Structural-level design methods can be
useful for managing the complexity of a
large design description.

= Structure level of abstraction is used to
combine multiple components to form a
larger circult.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 73

ﬁl The College of New Jersey

Structural Verilog

= Structural Verilog Descriptions Are Quite
Similar in Format to Schematic Netlists.

= Larger Circuits Can Be Constructed
From Smaller Building Blocks.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 74

@ The College of New Jersey

Example of Structural Verilog

Let us consider an ALU with
= An OR gate

= An XOR gate

= A Half Adder

= A Full Adder

= A Multiplexer

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 75

Example of Structural BRIt

Verilog

OR XOR Half Full
gate gate Adder Adder

Mux

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 76

@ The College of New Jersey

ALU - Block Diagram

sl sO
a .
b . D e
o —
4to01 > 7
*— haf — > X
— »C out
. adder -
>
full
_ adder I
c_in

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 7

@ The College of New Jersey

ALU - Function Table

SO Z C out
aorb 0

a xor b 0
ha c out
fa sum fa c out

= O O
==
=
e
wn
-

3

sl sO

a—— 4
b

)

4 rrt]o 1 Z
u '
T aoer ——»Coout
full
adder [

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 8

@ The College of New Jersey

Verilog code for OR gate

module t_or (a, b, ored);
Input a, b;
output ored;

assign ored = a | b;
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 79

@ The College of New Jersey

Verilog code for XOR

module t_xor (a, b, xored);
Input a, b;
output xored;

assign xored = a ™ b;
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 80

@ The College of New Jersey

Verilog Code for half_adder

// Half Adder

module half adder (a, b, sum, c_out);
Input a, b; // declaring 1/0 ports
output sum, c_out;

A >) > sum
assign sum = a ™ b; =
. Figure 1-1 Half adder circuit
assign c_out = a & b;
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 81

@ The College of New Jersey

Full Adder circuit

I \ 1
enanilps { i sum
)
.

S2
s3 ! c_out

c in

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 82

@ The College of New Jersey

Verilog code for full_adder

// Full Adder

module full_adder (a, b, c_in, sum, c_out);
input a, b, c_in;
output sum, c_out;

wire sl, s2, s3;

assign sl =a”™b;

assign s2 =c_in & s1;

assign s3 =a & b;

assign sum = a ™ b;

assign c¢_out = s2 | s3;
endmodule

// Using Signal Assignment Instructions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

83

@ The College of New Jersey

Main Code for ALU

module alu (a, b, c_in, s0, s1, z, c_out);
input a, b, c_in, sO, s1;
output z, c_out;

reg z, c_out;
wire ored, xored, ha_sum, ha c out, fa_sum, fa_c_out;

t or al (.a(a), .b(b), .ored(ored));

t xor x1 (.a(a), .b(b), .xored(xored));

half_adder hl (.a(a), .b(b), .sum(ha_sum),
.c_out(ha_c_out));

full_adder f1 (.a(a), .b(b), .c_in(c_in), .sum(fa_sum),
.c_out(fa_c_out));

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 84

@ The College of New Jersey

Main Code for ALU Cont....

always @ (a or b or c_in or sO or s1) begin

if (s1 =

end

if (s1 =

end

if (s1 =

end

if (s1 =

end
end
endmodule

= 1'b0 && sO == 1'b0) begin

Z = ored;
c_out = 1'b0;

= 1'b0 && sO == 1'bl) begin

Z = xored;
c_out = 1'b0;

= 1'b1 && sO == 1'b0) begin

z = ha_sum;
c_out = ha_c_out;

= 1'b1 && sO = 1'bl) begin

z = fa_sum;
c_out = fa_c_out;

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 85

‘ @ The College of New Jersey

CONTROL AND DATA PATH
ORGANIZATION

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 86

@ The College of New Jersey

Control and Data Path Organization

= Most complex digital circuits can be
broken up into two parts:

= Control
= Data Path

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 87

ENJ' | The College of New Jersey

Control and Data Path Organization

CONTROL

OBSERVATION

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 88

@ The College of New Jersey

Finite State Machines

s Two Classes of Finite State Machines
(FSMs):
= Moore Machines
= Mealy Machines

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 89

EM‘ | The College of New Jersey

Moore Finite State Machines

= Outputs depend only on the state

= State and Outputs Processing are
combinational elements

= State Vector is Sequential Elements

OUTPUTS

90

CLOCK

INPUTS

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

EM‘ | The College of New Jersey

Mealy Finite State Machines

= Outputs depend on the state and the
INputs

CLOCK

INPUTS

OUTPUTS

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

91

ﬁl The College of New Jersey

Verilog IMPLEMENTATION
EXAMPLES — A Decimation Filter for
a Sigma-Delta Analog to Digital
Converter

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 92

@ The College of New Jersey

2-Ch 1-A Analog to Digital Converter

RSTN — |
CLK I |
PD1 | > |
PD2 i > v l
PD3 | > _ SYNC ' :[> 1|
- : Clock Generation Lo |
G2 I ' I :
Gl f | | |
0 I cee | | |
e, I Vv \ A / : | Digital Filter |
= | PGA _—> Integrators / Comparator ! CMF‘Il > (Sinc?) :
| | =
VIN e XL, X2, X8, X16 7y I :
| - |
!] L |
[Jf— I : :
| |
cee | |
8 I ~Y_ vy A AN 4 : | Digital Filter |
S l PGA __—> Integrators / Comparator | CMF1|2 > (Sinc?) :
| | -
V2IN [x1, X2, x8, x16 A | : :
T | :
I = L | . .
= | |
: 27 Order A Modulators : | Digital Design |
| |
[e T~ AN L i
| T2V / | | |
| P :
| T T
| . - |
| Analog Design % T |
| e |
L |
S_AADC G REF+

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 93

2nd Order X-A Modulator

(block/algorithmic)

ouT
J

| :
—D
4
AR
T\
v
L ¢
4
o1
T\
v

= This can be modeled in Behavioral Verilog

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 94

2"d Order X-A Modulator

(circuit)

IN+ BL ’gw_‘ T1 | Az j AZB B2 S} sL__| ‘C[P

doeeo o — C
= A iy il B MP1 B1 52 ~AP2
S S e - LK SO S N
— ——o"0 Ng—"0——¢ vBl _—

.......... S2
B2 T2 ™~ C STRB
- S ” Y i€
AZ
IN- B1 (o 1 ; AZB B2 Cy S1 Crg
VCMI . N
VCMI I\ 71
T Cra Cy
— \ Chez Bl -
N REF+
! B2
o o— | L —o
o o—— ——0
“ B2
- i
! /
FL 1 Crer B1
A 4
VCMI

= This can also be modeled in Behavioral Verilog

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 95

@ The College of New Jersey

Decimation Digital Filter

an N Nan ;
% I % I D { T
fs f,/ OSR
L) L) L) L
fS/OSR A A A

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 96

@ The College of New Jersey

Decimation Digital Filter

s Cubic sinc

= Bits of noise free accuracy for delta-
sigma ADC's:
= BITS = 3 * LOG(OSR) / LOG(2) + 2
= Assume OSR=32, then BITS=17, and set
BITS=16

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 97

@ The College of New Jersey

Decimation Digital Filter

= First Filter Equations

» H(2) =Y, (D)/X(2) =1/(1 -3 21+ 3 z2- 723)

= yi(n) =x(n) + 3 y;(n-1) - 3y,(n-2) + y;(n-3)
= Second Filter Equations

« H,2) =Y/ X, (2)=1-3z'+3272%-2723

= y(n) = xy(n) - 3 x.(n-1) + 3 x,(nN-2) - X;(n-3)
= Decimation (Retiming)

= X,(nN)=y,(n/OSR)

= X;(n)=Yy,(n/32)

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 98

y1(n) = x(n) + 3 y;(n-1) - 3 y,(n-2) + y,(n-3)

y(n) = x3(n) - 3 x,(n-1) + 3 x;(n-2) - x;(n-3)
x;(n)=y,(n/32)

@ The College of New Jersey

What do we need for our design?

= Control = Data Path
= Onevery x(n) = 16 bits
S02: Store x(n) in accumulator, count x(n) mod 32 s Adder-Accumulator
S03: Accumulate 2 y,(n-1)

S04:
S05:
S06:
S07:
S08:
S09:

u
Accumulate y,(n-1)

Accumulate 1's complement of 2 y,(n-2)

Accumulate 1's complement of y;(n-2) "
Accumulate 2 "
Accumulate y,(n-3) -

Update y registers

= On every x,(n) (every 32"y, (n))

S10:
S11:
S12:
S13:
S14:
S15:
S16:
S17:

Accumulate 1's complement of 2 x,(n-1)
Accumulate 1's complement of x;(n-1)
Accumulate 2 x,(n-2)

Accumulate x,(n-2)

Accumulate 1's complement of x;(n-3)
Accumulate 3, output result

Store y,(n-1) in accumulator

Update x registers

1's complement

Shift left by one (x 2)

Store y,(n-1), y1(n-2), y1(n-3)
Store x,(n-1), X,(n-2), x,(n-3)
Constants: 2 & 3

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 99

ENJ' | The College of New Jersey

Decimation Digital Filter Architecture

bouT

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 100

@ The College of New Jersey

Verilog code for Data_Path

// Data_Path

module Data Path (CLK, reset, xn, URy, URX,
S2, S3, $4, S1,
OUTPUT);

Input CLK, reset, xn, URy, URX, S2;
Input [1:0] S3, S4;

Input [2:0] S1;

output [15:0] OUTPUT,;

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 101

reg [15:0] Ryl n 1, Ryl n 2, Ryl n_3;
reg [15:0] Rx1_n 1, Rx1 n 2, Rx1 n_3;
reg [15:0] ACCUMULATOR;

parameter my_zero = 16’b0000000000000000;

reg [15:0] T1, T2, T3, T4, T5;
reg my_msb;

assign OUTPUT = ACCUMULATOR;

always @ (posedge CLK or reset) begin
if (reset == 1'bl) begin
Ryl n_1 =my_zero; Ryl n_2 = my_zero; Ryl _n_3 = my_zero;
Rx1_n_1 =my_zero; Rx1_n_2 = my_zero; Rx1_n_3 = my_zero;
ACCUMULATOR = my_zero;
else if (CLK == 1'b1) begin
if (URy == 1'b1) begin
Ryl n 3=Ryl n 2;Ryl n 2=Ryl n_1;
Ryl _n_1 = ACCUMULATOR;
end
if (URx == 1'b1) begin
Rx1 n 3=Rxl1 n 2;Rxl1 n 2=Rx1l n_1;
Rx1_n_1 = ACCUMULATOR;
end
case (S1)
3'b000 : T1 =Ryl n_1;
3'b001 : T1 =Ryl n_2;

@ The College of New Jersey

Verilog code for Data_Path

3'b010 : T1 =Ryl n_3;
3'b011 : T1 =Rx1 _n_1;
3'b100 : T1 =Rx1_n_2;
3'b101: T1 =Rx1 n_3

endcase
case (S2)
1'b0 :
my_msb = T1[15];
T2=Tl<<1;

T3=T2&16'b0111111111111111;
T4 = T3 | {my_msb, 15’b000000000000000};
1bl:T4=TI1;
endcase
case (S3)
2'b00 : T5 = ~T4;
2'b01 : T5 = T4;
2'b10 : T5 = 16’b0000000000000010;
2'b11 : T5 = 16’b0000000000000011;
endcase
case (S4)
2'b00 : ACCUMULATOR = {15’b000000000000000, xn};
2'b01 : ACCUMULATOR =Ryl n_1;
2'b10 : ACCUMULATOR = ACCUMULATOR + T5;
endcase
end
end
endmodule

Electrical & Computer Engineering

School of Engineering

THE COLLEGE OF NEW JERSEY

102

@ The College of New Jersey

Verilog code for Controller

// Controller
module Controller (CLK, reset, ISS, URy, URX,
S2, 0SS, S3, S4, S1);

Input CLK, reset, ISS;
output URy, URX, S2, OSS;
output [1:0] S3, 34,
output [2:0] S1;

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

103

@ The College of New Jersey

Verilog code for Controller

parameter SO0 = 5’h00, SO1 = 5’h01, S02 = 5'h02, S03 = 5'h03, . L L
S04 = 5'h04, S05 = 505, S06 = 5'h06, S07 = 5'h07, S08 = 5'h08, It (PRState == S03 || PRState == S05 |
S09 = 5'h09, S10 = 5'h0A, S11 = 5'h0B, S12 = 5'h0C, S13 = 5’h0D, PRState == S10 || PRState == S12) S2 = 1'b0;
S14 = 5'hOE, S15 = 5'hOF, S16 = 5'h10, S17 = 5'h11; else S2 = 1'b1;
if (PRState == S05 || PRState == S06 ||

reg URy, URx, 52, OSS; PRState == S10 || PRState == S11 ||

reg [1:0] S3, S4;

reg [2:0] S1; PRState == S14) S3 = 2'b00;
else if (PRState == S07) S3 = 2'b10;
reg [4:0] PRState, NXState; else if (PRState == S15) S3 = 2'b11;
else S3 = 2'b01;

reg [4:0] Counter; if (PRState == S02) S4 = 2'b00;

always @ (PRState) begin else if (PRState == S16) S4 = 2'b01;

if (PRState == S09) URy = 1'b1; else S4 = 2'b10;
else URy = 1'b0; if (PRState == S15) OSS = 1'b1;
if (PRState == S17) URx = 1'b1; else 0SS = 1'b0;

else URx = 1'b0;

if (PRState == S05 || PRState == S06) S1 = 3'b001;
else if (PRState == S08) S1 = 3'b010;

else if (PRState == S10 || PRState == S11) S1 = 3'b011;
else if (PRState == S12 || PRState == S13) S1 = 3'b100;
else if (PRState == S14) S1 = 3'b101;

else S1 = 3'b000;

end

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 104

@ The College of New Jersey

Verilog code for Controller

always @ (posedge CLK or reset) begin S07 : NXState = S08;

If (reset == 1'b1) begin S08 : NXState = S09;
PRState = S00; S09 : if (Counter == 5’b00000) NXState = S10;
Counter = 5’b00000; else NXState = S01;

end S10 : NXState = S11;

else begin S11 : NXState = S12;
PRState = NXState; S12 : NXState = S13;
iIf (Counter == 5’h11111) Counter = 5’b00000; S13 : NXState = S14;
else Counter = Counter + 5’b00001; S14 : NXState = S15;
end S15 : NXState = S16;
end S16 : NXState = S17
always @ (PRState or ISS) begin S17 : NXState = SO01;
case (PRState) endcase
SO0 : if (ISS == 1'b1) NXState = S02; end
SO1 : if (ISS == 1'b1) NXState = S02; endmodule

S02 : NXState = S03;
S03 : NXState = S04;
S04 : NXState = S05;
S05 : NXState = S06;
S06 : NXState = S07;

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 105

‘
Main Code for FILTER

module FILTER (reset, CLK, ISS, xn,
0SS, OUTPUT);

Input reset, CLK, ISS, xn;
output OSS;
output [15:0] OUTPUT,;

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 106

@ The College of New Jersey

Main Code for FILTER Cont...

wire URy, URX, S2;
wire [1:0] S3, S4;
wire [2:0] S1;

Controller ¢ (.CLK(CLK), .reset(reset),
JASS(1ISS), .URy(URYy), .URX(URX), .S2(S2),
.0SS(0SS), .S3(S3), .54(S4), .S1(S1));
Data_ Path dp (.CLK(CLK), .reset(reset),
xn(xn), .URy(URYy), .URX(URX), .S2(S2),
.S3(S3), .54(5S4), .S1(S1), .OUTPUT(OUTPUT));
endmodule

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 107

EM‘ | The College of New Jersey

Conclusions

From Gates to Large IP

;l i !

1 |
IENENEEE E- ‘
L

(=
l s
o j b
7] .}'—]_
o |
o
(1]
= 1
B CPU
O

L]

aER

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 108

El\h' | The College of New Jersey

Conclusions

System Silicon

IP
Providers

Virtual Components

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

109

EM‘ | The College of New Jersey

it e
o aly . o
fffff A

hernande@tcnj.edu

http://www.tcnhj.edu/~hernande/

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

110

