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@ The College of New Jersey

Presentation Overview

= Introduction to Verilog — Part |
= Introduction to Verilog — Part 11
= AND, OR, HALF ADDER, FULL ADDER

= Introduction to Verilog — Part Il
= ALU Design

= Control and Data Path Organization
= Finite State Machines, Digital Filter

s Q&A Sessions
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INTRODUCTION TO Verilog
PART 1
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ﬁl The College of New Jersey

Design Automation

= Need To Keep With Rapid Changes,
Electronic Products Have To Be
Designed Extremely Quickly

= Electronic Design Automation (EDA)
= Design Entry
= Simulation
= Synthesis
= Design Validation & Test
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@ The College of New Jersey

Design Automation. Cont...

= Design Entry
= Schematic Capture
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@ The College of New Jersey

Design Automation. Cont...

= Design Entry - Textual Form:

= Verilog

= VHDL (VHSIC Hardware Description
Language)

= VHSIC (Very High Speed Integrated
Circuits)
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@ The College of New Jersey

Design Automation. Cont...

= Design Entry - Textual Form:

module and_2 (X, Y, 2);
input X, Y;
output Z;

assign Z =X &Y,
endmodule
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@ The College of New Jersey

Introduction To Verilog

= Verilog Is an Industry Standard
Language to Describe Hardware From
the Abstract to Concrete Level.
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ﬁl The College of New Jersey

BRIEF HISTORY OF Verilog

= Began as a proprietary HDL promoted by Cadence
Design Systems.

= Cadence transferred control of Verilog to a
consortium of companies and universities known as
Open Verilog International (OVI).

= Verilog is an IEEE Standard (IEEE Standard 1364-
1995).

= Verilog continues to be extended and upgraded (IEEE
Standard 1364-2000, System Verilog).
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ﬁl The College of New Jersey

MOTIVATION

= Need a Method to Quickly Design,
Implement, Test and Document
Increasingly Complex Digital Systems.

= Schematic and Boolean Equations
Inadequate for Million-Gate ICs.

= Design Portability
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ﬁl The College of New Jersey

What is Verilog?

= A Design entry language

= A Simulation modeling language.
= A Verification language.

= A Standard language.

= As simple or complex as required.
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ﬁl The College of New Jersey

How is Verilog Used?

= For Design Specification (“Specify”) Specify
= For Design Entry (“Capture”) Capture
= For Design Simulation (“Verify”) Verify
= For Design Documentation (“Formalize”) Formalize
= As an Alternate to Schematics Implement
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@ The College of New Jersey

Design Process (e. g. for FPGAs)

= Verilog Can Be Used for Both Design
and Test Development

Design Entry <— Test Development
g ! !
Synthesis [+—{ Functional Simulation
;
Device Mapping > Timing Simulation
:
Device
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ﬁl The College of New Jersey

When Should Verilog Be Used?

= Verilog Is highly beneficial to use as a
structured, top down approach to
design.

= Verilog makes it easy to build, use, and
reuse libraries of circuit elements.

= Verilog can greatly improve your
chances of moving into more advanced
tools and design flows.
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Advantages of Verilog

The Ability to Code the Behavior and to
Synthesize an Actual Circuit.

Power and Flexibility

Device (specific FPGA) Independent Design

Technology (specific silicon process)
Independent Design
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@ The College of New Jersey

Advantages of Verilog Cont...

= Portability Among Tools and Devices

s Fast Switch Level Simulations

= Quick Time to Market and Low Cost

= Industry Standard
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@I The College of New Jersey
‘ Getting Started with Verilog

= Its Easy To Get Started With Verilog,
But It Can Be Difficult To Master It.

= To Begin With, A Subset of The
_anguage Can Be Learned To Write
Useful Models.

= Later, More Complex Features Can Be
_earned To Implement Complex
Circuits, Libraries, And APIs.
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A First look at Verilog

= Lets start with a simple Combinational
circuit: an 8-bit Comparator.
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@ The College of New Jersey

An 8 Bit Comparator

= Comparator Specifications:
= Two 8-bit inputs
= 1-bit Output

= Output is 1 if the inputs match or O if they
differ.
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@ The College of New Jersey

An 8 Bit Comparator

Comparator

A[8]

B[8] EQ

O(1,2|3|4|5
Al1 0 1 1 0 0 1 1
o 1 1 0 0 1 1
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@ The College of New Jersey

Comparator Verilog Source Code

// Eight-bit Comparator
module compare (A, B, EQ)
iInput [7:0] A, B;
output EQ;

assign EQ = (A == B);
endmodule

> Define the inputs and outputs - the ports of the circuit
> Define the function of the circuit

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 21



ﬁl The College of New Jersey

What is a module

= Every Verilog design description has at least
one module construct.

= A large design has many modules and are
connected to form the complete circuit.

= The module port declarations describe the
circuit as It appears from “outside”- from
perspective of its input and output interfaces.
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@ The College of New Jersey

What is a module?

module compare (A, B, EQ)
iInput [7:0] A, B;
output EQ;

= The module and port declarations includes a name,
compare, and port direction statements defining all
the inputs and outputs of the module.

s The Rest of the module Describes the Actual Function.
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@ The College of New Jersey

What is a module?

assign EQ = (A == B);
endmodule

= Before the keyword endmodule is found
the actual functional description of the
comparator.
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ﬁl The College of New Jersey

Data Types

= Verilog’s high level data types allow
data to be represented in much the
same way as In high-level programming
languages.

= A data type Is an abstract
representation of stored data.
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@ The College of New Jersey

Data Types

= These data types might represent
individual wires In a circuit, or a
collection of wires.
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@ The College of New Jersey

Data Types

= Basic Data Types

n Nets
wire, wand, tri, wor
Continuously driven
Gets new value when driver changes
LHS of continuous assignment
tri [15:0] data;
// unconditional
assign data[15:0] = data_in;
// conditional
assign data[15:0] = enable ? data_in : 16'bz;
= Registers
Reg
Represents storage
Always stores last assigned value
LHS of an assignment in a procedural block
reg signal;
@(posedge clock) signal = 1'b1;
// possitive edge
@(reset) signal = 1'b0; // event (both edges)
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ﬁl The College of New Jersey

Some Data Types

ata Type Values Examples

Bit 1, '0",'x', 'z Q= 1'b1;

Array of bits  "101001" Data[5:0] = 6’b101001;
Boolean Use Bit EQ =1'b1;// True
Integer -2,-1,0,1,2,3 C=c+2;

Real 1.0, -1.0E5 V1=V2/5.3;

Time ‘timescale 1ns/1ps #6 Q = 1’b1;

Register Single or array of bits

Character Use 8-bit register

String

Use register of length 8 x the # of characters
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ﬁl The College of New Jersey

Design Units

= Design units are a concept that provide
advanced configuration management
capabillities.

= Design units are modules of Verilog that
can be compiled separately and stored
In a library.
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ﬁl The College of New Jersey

Library Design unit

= A Library Is a collection of commonly
used modules to be used globally
among different design units.

= Library Is identified with
compiler/simulator command line
switches.
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ﬁl The College of New Jersey

Levels of Abstraction (Styles)

= Verilog supports many possible styles of
design description.

= These styles differ primarily in how
closely they relate to the underlying
hardware.
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ﬁl The College of New Jersey

Levels of Abstraction (Styles)

s Levels of Abstraction refers to how far
your design description Is from an
actual hardware realization.

s The three main levels of abstraction
are:

= Behavior
= Dataflow
s Structure
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ﬁl The College of New Jersey

Levels of Abstraction (Styles)

: Performance Specification
Behavior Test Benches
Sequential Description
State Machines
Register Transfers
Dataflow Selected Assignments
Arithmetic Operation
Boolean Equations
Hierarchy
Structure Physical Information
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ﬁl The College of New Jersey

Behavioral Modeling

= The Highest Level of Abstraction
Supported in Verilog.

= The Behavior Approach Describes the
Actual Behavior of Signals Inside the
Component.
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ﬁl The College of New Jersey

Verilog Timing Issues

= The Concept of Time Is the Critical
Distinction Between Behavioral
Descriptions and Low Level
Descriptions.

= The Concept to Time May Be Expressed
Precisely, With Actual Delays Between
Related Events
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An Example of Behavioral Modeling: A half adder

sum

carry
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@ The College of New Jersey

half adder

= Half Adder
= Inputs a, b : 1 bit each.
= Output Sum, Carry : 1 bit each.

Z D
—

carry

Figure 1-1 Half adder circuit
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@ The College of New Jersey

Verilog Code for half_adder

// Half Adder

module half_adder (a, b, sum, carry);
Input a, b;
output sum, carry;

reg sum, carry;

always @ (a or b) begin
sum = a ™ b;
carry = a & b;
end
endmodule
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@ The College of New Jersey

INTRODUCTION TO Verilog
PART 11
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ﬁl The College of New Jersey

Dataflow Modeling

s The dataflow level of abstraction is often
called Register Transfer Language (RTL).

= Some behavioral modeling can also be called
RTL.

= The dataflow level of abstraction describes

how information is passed between registers
In the circuit.
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ﬁl The College of New Jersey

Concurrent and Sequential Verilog

= Verilog Allows Both Concurrent and
Seqguential Statements to Be Entered.

= The Difference Between Concurrent and
Sequential Statements Must Be Known
for Effective Use of the Language.
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ﬁl The College of New Jersey

Concurrent Verilog

s All Statements Iin the Concurrent Area
Are Executed at the Same Time.

= There Is No Significance to the Order In
Which Concurrent Statements Occur.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 42
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Concurrent Verilog

—> Statement

—> Statement

L » Statement
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Example of Concurrent Veilog

Full Adder

Sum

C out
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@ The College of New Jersey

Full Adder circuit

I \ 1
enanilps { i sum
)
.

S2
s3 ! c_out

c in
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Verilog code for Full Adder

// Full Adder Using Signal Assignment Instructions
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;

output sum, c_out;

wire sl, s2, s3;

assign sl =a ™ b;

assign s2 =sl & c_in;

assign s3 =a & b;

assign sum = s1 ™ c_in;

assign c_out = s2 | s3;
endmodule
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ﬁl The College of New Jersey

Verilog code for Full Adder

= The assign expressions are all
concurrent signal assignment
statements. All the statements are

executed at the same time.
assign sl = a ™ b;
assign s2 =sl & c_in;
assign s3 =a & b;
assign sum =sl1 ™ c_in;
assign c_out = s2 | s3;
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ﬁl The College of New Jersey

Verilog code for Full Adder

= The simulator evaluates all the assign
expressions, and then applies the
results to the signals.

= Once the simulator has applied the
results it waits for one of the signal to
change and it reevaluates all the
expressions again.
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ﬁl The College of New Jersey

Verilog code for Full Adder

= This cycle will continue until the
simulation Is completed.

= This Is called “event driven simulation”.

= It IS more computationally efficient than
time driven simulation.
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@ The College of New Jersey

Wires

= In the full adder Verilog code we came across “wire”.

= SO what are “wires”?

= Wires Are Used to Carry Data From Place to Place in a
Verilog Design Description.

= Wires in Verilog Are Similar to Wires in a Schematic.

= Wires are internal to a module.
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ﬁl The College of New Jersey

Sequential Verilog

= Sequential Statements Are Executed
One After the Other in the Order That
They Appear.

= Example of Sequential Statement:
Always.
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@ The College of New Jersey

Sequential Verilog

Begin

l

Statement

!

Statement

'

Statement

!

End
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ﬁl The College of New Jersey

Always Construct

= The Always construct is the primary means to
describe sequential operations.

= Always starts with the keyword a/ways, then
begin, and ends with the keyword end.

= The whole a/ways construct itself is treated as
a concurrent statement.
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@ The College of New Jersey

Always Statement

= The always construct consists of three
parts

= Sensitivity List
= Declaration Part
s Statement Part
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@ The College of New Jersey

Syntax of Always Statement

module module_name ( ... ports ... );

always @ (sensitivity_list)
begin : block _name
local declaration;
sequential statement;
sequential statement;
end
endmodule
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@ The College of New Jersey

Always Example

module nand2 (a, b, c);
Input a, b;
output c;

reg c;

always @ (a or b)

begin : nand2_always_block
reg temp;
temp = ~(a & b);
If (temp == 1'b1l) #5 ¢ = temp;
else if (temp == 1'b0) #6 ¢ = temp;

end

endmodule
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@ The College of New Jersey

Example Description

= The always sensitivity list enumerates
exactly which signals causes the block

to execute.

always @ (a or b)
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@ The College of New Jersey

Example Description

= The declarative part Is used to declare
local variables or constants that can be
used In the block.

reg temp;
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@ The College of New Jersey

Example Description

= Variables are temporary storage areas
similar to variables in software
programming languages.

reg temp;
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Use of Sequential Statements

= Sequential Statements Exist Inside the
Always Statements As Well As in Sub
Programs.

= The Sequential Statements Are:
If case forever repeat
while for wait fork/join
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@ The College of New Jersey

if Statements

s The IF statement starts with the
keyword /fand ends with the keyword
end.

If (x <10) begin
a=nDh;
end
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ﬁl The College of New Jersey

if Statements

= There are also two optional clauses

If (day == Sunday) begin
= else if clause weekend = true;

end
= else clause else if (day == Saturday) begin

weekend = true;
end
else begin

weekday = true;
end
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@ The College of New Jersey

if Statements

= The If statement can have multiple else
If statement parts but only one else
statement part.
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Case Statement

s [he Case statement Is used whenever a

single expression value can be used to
select between a number of actions.

= A Case statement consists of the
keyword case followed by an operator

expression, and ended with an
endcase keyword.
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ﬁl The College of New Jersey

Case Statement

= The expression will either return a value
that matches one of the choices in a
statement part or match a default
clause.
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@ The College of New Jersey

Case Statement Example

reg [1:0] bit_vec;

case bit_vec
2’b00 :
return = 0;
2’b01 :
return = 1;
2’b10:
return = 2;
2’b11 :
return = 3;

endcase

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 66



ﬁl The College of New Jersey

Loop Statements

= The loop statement is used whenever an
operation needs to be repeated.

= Loop statements are implemented in three
ways

= repeat condition loop statement
= While condition loop statement
= forcondition loop statement
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ﬁl The College of New Jersey

Loop Statements (repeat)

= The repeat condition Loop statement
will loop as many times as the condition
expression.

repeat (flag) begin
day = get _next_day (day);
end
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ﬁl The College of New Jersey

Loop Statements (while)

= The whi/e condition Loop statement
will loop as long as the condition
expression Is TRUE.

while (day == weekday) begin
day = get next_day (day);
end
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ﬁl The College of New Jersey

Loop Statements (for loop)

for 1=1;1<=10;1=1+1) begin
|_squared[i] = I”*i;
end

= This loop will execute 10 times
whenever execution begins and Its
function Is to calculate squares from 1
to 10 and insert them Into |_squared
memory.

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 70



El\h' | The College of New Jersey

Wait Statement

= The wart statement allows to suspend
the sequential execution based on a
conditional expression.

= wartuntil an expression is true.
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Wait Statement

= The wart conditional expression clause
will suspend execution of the process
until the expression returns a true
value.
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ﬁl The College of New Jersey

Structural Verilog

= Structural-level design methods can be
useful for managing the complexity of a
large design description.

= Structure level of abstraction is used to
combine multiple components to form a
larger circult.
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Structural Verilog

= Structural Verilog Descriptions Are Quite
Similar in Format to Schematic Netlists.

= Larger Circuits Can Be Constructed
From Smaller Building Blocks.
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Example of Structural Verilog

Let us consider an ALU with
= An OR gate

= An XOR gate

= A Half Adder

= A Full Adder

= A Multiplexer
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Example of Structural BRIt

Verilog

OR XOR Half Full
gate gate Adder Adder

Mux
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ALU - Block Diagram

sl sO
a .
b . D e
o —
4to01 > 7
*— haf — > X
— »C out
. adder -
>
full
_ adder I
c_in
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@ The College of New Jersey

ALU - Function Table

SO Z C out
aorb 0

a xor b 0
ha c out
fa sum fa c out

= O O
==
=
e
wn
-

3

sl sO

a—— 4
b

)

4 rrt]o 1 Z
u '
T aoer ——»Coout
full
adder [
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Verilog code for OR gate

module t_or (a, b, ored);
Input a, b;
output ored;

assign ored = a | b;
endmodule
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@ The College of New Jersey

Verilog code for XOR

module t_xor (a, b, xored);
Input a, b;
output xored;

assign xored = a ™ b;
endmodule
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@ The College of New Jersey

Verilog Code for half_adder

// Half Adder

module half adder (a, b, sum, c_out);
Input a, b; // declaring 1/0 ports
output sum, c_out;

A >) > sum
assign sum = a ™ b; =
. Figure 1-1 Half adder circuit
assign c_out = a & b;
endmodule
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Full Adder circuit

I \ 1
enanilps { i sum
)
.

S2
s3 ! c_out

c in
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@ The College of New Jersey

Verilog code for full_adder

// Full Adder

module full_adder (a, b, c_in, sum, c_out);
input a, b, c_in;
output sum, c_out;

wire sl, s2, s3;

assign sl =a”™b;

assign s2 =c_in & s1;

assign s3 =a & b;

assign sum = a ™ b;

assign c¢_out = s2 | s3;
endmodule

// Using Signal Assignment Instructions
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@ The College of New Jersey

Main Code for ALU

module alu (a, b, c_in, s0, s1, z, c_out);
input a, b, c_in, sO, s1;
output z, c_out;

reg z, c_out;
wire ored, xored, ha_sum, ha c out, fa_sum, fa_c_out;

t or al (.a(a), .b(b), .ored(ored));

t xor x1 (.a(a), .b(b), .xored(xored));

half_adder hl (.a(a), .b(b), .sum(ha_sum),
.c_out(ha_c_out));

full_adder f1 (.a(a), .b(b), .c_in(c_in), .sum(fa_sum),
.c_out(fa_c_out));
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Main Code for ALU Cont....

always @ (a or b or c_in or sO or s1) begin

if (s1 =

end

if (s1 =

end

if (s1 =

end

if (s1 =

end
end
endmodule

= 1'b0 && sO == 1'b0) begin

Z = ored;
c_out = 1'b0;

= 1'b0 && sO == 1'bl) begin

Z = xored;
c_out = 1'b0;

= 1'b1 && sO == 1'b0) begin

z = ha_sum;
c_out = ha_c_out;

= 1'b1 && sO = 1'bl) begin

z = fa_sum;
c_out = fa_c_out;
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CONTROL AND DATA PATH
ORGANIZATION
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Control and Data Path Organization

= Most complex digital circuits can be
broken up into two parts:

= Control
= Data Path
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Control and Data Path Organization

CONTROL

OBSERVATION
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@ The College of New Jersey

Finite State Machines

s Two Classes of Finite State Machines
(FSMs):
= Moore Machines
= Mealy Machines
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Moore Finite State Machines

= Outputs depend only on the state

= State and Outputs Processing are
combinational elements

= State Vector is Sequential Elements

OUTPUTS

90

CLOCK

INPUTS
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Mealy Finite State Machines

= Outputs depend on the state and the
INputs

CLOCK

INPUTS

OUTPUTS
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Verilog IMPLEMENTATION
EXAMPLES — A Decimation Filter for
a Sigma-Delta Analog to Digital
Converter
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@ The College of New Jersey

2-Ch 1-A Analog to Digital Converter
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| |
cee | |
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2nd Order X-A Modulator

(block/algorithmic)

ouT
J

| :
—D
4
AR
T\
v
L ¢
4
o1
T\
v

= This can be modeled in Behavioral Verilog
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2"d Order X-A Modulator

(circuit)
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= This can also be modeled in Behavioral Verilog
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@ The College of New Jersey

Decimation Digital Filter

an N Nan ;
% I % I D { T
fs f,/ OSR
L ) L ) L ) L
fS/OSR A A A
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@ The College of New Jersey

Decimation Digital Filter

s Cubic sinc

= Bits of noise free accuracy for delta-
sigma ADC's:
= BITS = 3 * LOG(OSR) / LOG(2) + 2
= Assume OSR=32, then BITS=17, and set
BITS=16
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@ The College of New Jersey

Decimation Digital Filter

= First Filter Equations

» H(2) =Y, (D)/X(2) =1/(1 -3 21+ 3 z2- 723)

= yi(n) =x(n) + 3 y;(n-1) - 3y,(n-2) + y;(n-3)
= Second Filter Equations

« H,2) =Y/ X, (2)=1-3z'+3272%-2723

= y(n) = xy(n) - 3 x.(n-1) + 3 x,(nN-2) - X;(n-3)
= Decimation (Retiming)

= X,(nN)=y,(n/OSR)

= X;(n)=Yy,(n/32)
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y1(n) = x(n) + 3 y;(n-1) - 3 y,(n-2) + y,(n-3)

y(n) = x3(n) - 3 x,(n-1) + 3 x;(n-2) - x;(n-3)
x;(n)=y,(n/32)

@ The College of New Jersey

What do we need for our design?

= Control = Data Path
= Onevery x(n) = 16 bits
S02: Store x(n) in accumulator, count x(n) mod 32 s Adder-Accumulator
S03: Accumulate 2 y,(n-1)

S04:
S05:
S06:
S07:
S08:
S09:

u
Accumulate y,(n-1)

Accumulate 1's complement of 2 y,(n-2)

Accumulate 1's complement of y;(n-2) "
Accumulate 2 "
Accumulate y,(n-3) -

Update y registers

= On every x,(n) (every 32"y, (n))

S10:
S11:
S12:
S13:
S14:
S15:
S16:
S17:

Accumulate 1's complement of 2 x,(n-1)
Accumulate 1's complement of x;(n-1)
Accumulate 2 x,(n-2)

Accumulate x,(n-2)

Accumulate 1's complement of x;(n-3)
Accumulate 3, output result

Store y,(n-1) in accumulator

Update x registers

1's complement

Shift left by one (x 2)

Store y,(n-1), y1(n-2), y1(n-3)
Store x,(n-1), X,(n-2), x,(n-3)
Constants: 2 & 3
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Decimation Digital Filter Architecture

bouT
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@ The College of New Jersey

Verilog code for Data_Path

// Data_Path

module Data Path (CLK, reset, xn, URy, URX,
S2, S3, $4, S1,
OUTPUT);

Input CLK, reset, xn, URy, URX, S2;
Input [1:0] S3, S4;

Input [2:0] S1;

output [15:0] OUTPUT,;

Electrical & Computer Engineering
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reg [15:0] Ryl n 1, Ryl n 2, Ryl n_3;
reg [15:0] Rx1_n 1, Rx1 n 2, Rx1 n_3;
reg [15:0] ACCUMULATOR;

parameter my_zero = 16’b0000000000000000;

reg [15:0] T1, T2, T3, T4, T5;
reg my_msb;

assign OUTPUT = ACCUMULATOR;

always @ (posedge CLK or reset) begin
if (reset == 1'bl) begin
Ryl n_1 =my_zero; Ryl n_2 = my_zero; Ryl _n_3 = my_zero;
Rx1_n_1 =my_zero; Rx1_n_2 = my_zero; Rx1_n_3 = my_zero;
ACCUMULATOR = my_zero;
else if (CLK == 1'b1) begin
if (URy == 1'b1) begin
Ryl n 3=Ryl n 2;Ryl n 2=Ryl n_1;
Ryl _n_1 = ACCUMULATOR;
end
if (URx == 1'b1) begin
Rx1 n 3=Rxl1 n 2;Rxl1 n 2=Rx1l n_1;
Rx1_n_1 = ACCUMULATOR;
end
case (S1)
3'b000 : T1 =Ryl n_1;
3'b001 : T1 =Ryl n_2;

@ The College of New Jersey

Verilog code for Data_Path

3'b010 : T1 =Ryl n_3;
3'b011 : T1 =Rx1 _n_1;
3'b100 : T1 =Rx1_n_2;
3'b101: T1 =Rx1 n_3

endcase
case (S2)
1'b0 :
my_msb = T1[15];
T2=Tl<<1;

T3=T2&16'b0111111111111111;
T4 = T3 | {my_msb, 15’b000000000000000};
1bl:T4=TI1;
endcase
case (S3)
2'b00 : T5 = ~T4;
2'b01 : T5 = T4;
2'b10 : T5 = 16’b0000000000000010;
2'b11 : T5 = 16’b0000000000000011;
endcase
case (S4)
2'b00 : ACCUMULATOR = {15’b000000000000000, xn};
2'b01 : ACCUMULATOR =Ryl n_1;
2'b10 : ACCUMULATOR = ACCUMULATOR + T5;
endcase
end
end
endmodule
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@ The College of New Jersey

Verilog code for Controller

// Controller
module Controller (CLK, reset, ISS, URy, URX,
S2, 0SS, S3, S4, S1);

Input CLK, reset, ISS;
output URy, URX, S2, OSS;
output [1:0] S3, 34,
output [2:0] S1;
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@ The College of New Jersey

Verilog code for Controller

parameter SO0 = 5’h00, SO1 = 5’h01, S02 = 5'h02, S03 = 5'h03, . L L
S04 = 5'h04, S05 = 505, S06 = 5'h06, S07 = 5'h07, S08 = 5'h08, It (PRState == S03 || PRState == S05 |
S09 = 5'h09, S10 = 5'h0A, S11 = 5'h0B, S12 = 5'h0C, S13 = 5’h0D, PRState == S10 || PRState == S12) S2 = 1'b0;
S14 = 5'hOE, S15 = 5'hOF, S16 = 5'h10, S17 = 5'h11; else S2 = 1'b1;
if (PRState == S05 || PRState == S06 ||

reg URy, URx, 52, OSS; PRState == S10 || PRState == S11 ||

reg [1:0] S3, S4;

reg [2:0] S1; PRState == S14) S3 = 2'b00;
else if (PRState == S07) S3 = 2'b10;
reg [4:0] PRState, NXState; else if (PRState == S15) S3 = 2'b11;
else S3 = 2'b01;

reg [4:0] Counter; if (PRState == S02) S4 = 2'b00;

always @ (PRState) begin else if (PRState == S16) S4 = 2'b01;

if (PRState == S09) URy = 1'b1; else S4 = 2'b10;
else URy = 1'b0; if (PRState == S15) OSS = 1'b1;
if (PRState == S17) URx = 1'b1; else 0SS = 1'b0;

else URx = 1'b0;

if (PRState == S05 || PRState == S06) S1 = 3'b001;
else if (PRState == S08) S1 = 3'b010;

else if (PRState == S10 || PRState == S11) S1 = 3'b011;
else if (PRState == S12 || PRState == S13) S1 = 3'b100;
else if (PRState == S14) S1 = 3'b101;

else S1 = 3'b000;

end
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@ The College of New Jersey

Verilog code for Controller

always @ (posedge CLK or reset) begin S07 : NXState = S08;

If (reset == 1'b1) begin S08 : NXState = S09;
PRState = S00; S09 : if (Counter == 5’b00000) NXState = S10;
Counter = 5’b00000; else NXState = S01;

end S10 : NXState = S11;

else begin S11 : NXState = S12;
PRState = NXState; S12 : NXState = S13;
iIf (Counter == 5’h11111) Counter = 5’b00000; S13 : NXState = S14;
else Counter = Counter + 5’b00001; S14 : NXState = S15;
end S15 : NXState = S16;
end S16 : NXState = S17
always @ (PRState or ISS) begin S17 : NXState = SO01;
case (PRState) endcase
SO0 : if (ISS == 1'b1) NXState = S02; end
SO1 : if (ISS == 1'b1) NXState = S02; endmodule

S02 : NXState = S03;
S03 : NXState = S04;
S04 : NXState = S05;
S05 : NXState = S06;
S06 : NXState = S07;
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‘
Main Code for FILTER

module FILTER (reset, CLK, ISS, xn,
0SS, OUTPUT);

Input reset, CLK, ISS, xn;
output OSS;
output [15:0] OUTPUT,;
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@ The College of New Jersey

Main Code for FILTER Cont...

wire URy, URX, S2;
wire [1:0] S3, S4;
wire [2:0] S1;

Controller ¢ (.CLK(CLK), .reset(reset),
JASS(1ISS), .URy(URYy), .URX(URX), .S2(S2),
.0SS(0SS), .S3(S3), .54(S4), .S1(S1));
Data_ Path dp (.CLK(CLK), .reset(reset),
xn(xn), .URy(URYy), .URX(URX), .S2(S2),
.S3(S3), .54(5S4), .S1(S1), .OUTPUT(OUTPUT));
endmodule
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Conclusions

From Gates to Large IP
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Conclusions

System Silicon

IP
Providers

Virtual Components
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