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Presentation OverviewPresentation Overview
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INTRODUCTION TO Verilog
PART I

3

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Design AutomationDesign Automation

 Need To Keep With Rapid Changes, 
Electronic Products Have To Be 
D i d E t l Q i klDesigned Extremely Quickly

 Electronic Design Automation (EDA)
 Design Entry
 Simulation

S th i Synthesis
 Design Validation & Test
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Design Automation. Cont…Design Automation. Cont…

D i E t Design Entry
 Schematic Capture

Q

Q
SET

S

R

5

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Q
CLR

R



Design Automation. Cont…Design Automation. Cont…

 Design Entry - Textual Form:  
 Verilog
 VHDL (VHSIC Hardware Description 

Language) 
 VHSIC (Very High Speed Integrated 

Circuits)
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Design Automation. Cont…Design Automation. Cont…

 Design Entry - Textual Form:

module and_2 (X, Y, Z);
input X Y;input X, Y;
output Z;

assign Z = X & Y;
endmodule
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Introduction To VerilogIntroduction To Verilog

 Verilog Is an Industry Standard 
Language to Describe Hardware From 
the Abstract to Concrete Level.
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BRIEF HISTORY OF VerilogBRIEF HISTORY OF Verilog

i d b C d Began as a proprietary HDL promoted by Cadence 
Design Systems.

 Cadence transferred control of Verilog to a 
consortium of companies and universities known as 
Open Verilog International (OVI).

 Verilog is an IEEE Standard (IEEE Standard 1364-
1995).

 Verilog continues to be extended and upgraded (IEEE 
Standard 1364-2000, System Verilog).
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MOTIVATIONMOTIVATION

 Need a Method to Quickly Design, 
Implement, Test and Document 
I i l C l Di it l S tIncreasingly Complex Digital Systems.

 Schematic and Boolean Equations 
Inadequate for Million-Gate ICs.

 Design Portability
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What is Verilog?What is Verilog?

 A Design entry language
 A Simulation modeling language.A Simulation modeling language.
 A Verification language.

A Standard language A Standard language.
 As simple or complex as required.
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How is Verilog Used?How is Verilog Used?

 For Design Specification (“Specify”) Specify

 For Design Entry (“Capture”)

Fo Design Sim lation (“Ve if ”)

Capture

Verify For Design Simulation (“Verify”)

 For Design Documentation (“Formalize”)

Verify

Formalize For Design Documentation ( Formalize )

 As an Alternate to Schematics

Formalize

Implement
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Design Process (e. g. for FPGAs)Design Process (e. g. for FPGAs)

 Verilog Can Be Used for Both Design 
and Test Development

Design Entry Test Development

Synthesis Functional Simulation

Device Mapping Timing Simulation

Device
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When Should Verilog Be Used?When Should Verilog Be Used?

 Verilog is highly beneficial to use as a 
structured, top down approach to 
design.

 Verilog makes it easy to build, use, and e og a es t easy to bu d, use, a d
reuse libraries of circuit elements.

 Verilog can greatly improve your Verilog can greatly improve your 
chances of moving into more advanced 
tools and design flows
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Advantages of VerilogAdvantages of Verilog

 The Ability to Code the Behavior and to 
Synthesize an Actual Circuit.

 Power and Flexibility

 Device (specific FPGA) Independent Design

 Technology (specific silicon process) 
Independent Design
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Advantages of Verilog Cont…Advantages of Verilog Cont…

 Portability Among Tools and Devices

 Fast Switch Level Simulations

 Quick Time to Market and Low Cost

 Industry Standard
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Getting Started with VerilogGetting Started with Verilog

 Its Easy To Get Started With Verilog, 
But It Can Be Difficult To Master It.

 To Begin With, A Subset of The 
Language Can Be Learned To Write 
U f l M d lUseful Models.

 Later, More Complex Features Can Be 
L d T I l t C lLearned To Implement Complex 
Circuits, Libraries, And APIs.
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A First look at VerilogA First look at Verilog

 Lets start with a simple Combinational 
circuit: an 8-bit Comparatorcircuit: an 8 bit Comparator.
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An 8 Bit ComparatorAn 8 Bit Comparator

 Comparator Specifications:
 Two 8-bit inputsp
 1-bit Output 
 Output is 1 if the inputs match or 0 if they p p y

differ.
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An 8 Bit ComparatorAn 8 Bit Comparator

Comparator

A[8]

EQB[8] EQB[8]

0 1 2 3 4 5 6 7
A 1 0 1 1 0 0 1 1
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Comparator Verilog Source Code

// Eight-bit Comparator

Comparator Verilog Source Code

module compare (A, B, EQ)
input [7:0] A, B;
output EQ;output EQ;

assign EQ = (A == B);
endmodule

Define the inputs and outputs - the ports of the circuit

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

p p p
Define the function of the circuit



What is a moduleWhat is a module

 Every Verilog design description has at least 
one module construct.

 A large design has many modules and are 
connected to form the complete circuitconnected to form the complete circuit.

 The module port declarations describe theThe module port declarations describe the 
circuit as it appears from “outside”- from 
perspective of its input and output interfaces.
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What is a module?

d l (A B EQ)

What is a module?

module compare (A, B, EQ)
input [7:0] A, B;
output EQ;

::
:

 The module and port declarations includes a name, The module and port declarations includes a name, 
compare, and port direction statements defining all 
the inputs and outputs of the module.

 The Rest of the module Describes the Actual Function.
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What is a module?What is a module?

:
:

assign EQ = (A == B);assign EQ  (A  B);
endmodule

 Before the keyword endmodule is found 
the actual functional description of thethe actual functional description of the 
comparator.
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Data TypesData Types

 Verilog’s high level data types allow 
data to be represented in much the 
same way as in high-level programming 
languages.

 A data type is an abstract A data type is an abstract 
representation of stored data.
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Data TypesData Types

 These data types might represent 
individual wires in a circuit, or a 
collection of wires.
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Data TypesData Types

B i D T Basic Data Types
 Nets

 wire, wand, tri, wor
 Continuously driven
 Gets new value when driver changes
 LHS of continuous assignment

tri [15:0] data;
// unconditional

assign data[15:0] = data_in;
// conditional

assign data[15:0] = enable ? data_in : 16’bz;
R i t Registers

 Reg
 Represents storage
 Always stores last assigned value
 LHS of an assignment in a procedural block

reg signal;reg signal;
@(posedge clock) signal = 1’b1;

// possitive edge
@(reset) signal = 1’b0;  // event (both edges)
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Some Data Types
Data Type Values Examples

Some Data Types

Bit
Array of bits
B l

'1' ,  '0' , 'x' , 'z'
"101001"
U Bit

Q =  1’b1;
Data[5:0] = 6’b101001;
EQ 1’b1 // TBoolean

Integer
Real

Use Bit
-2, -1, 0, 1, 2, 3
1 0 -1 0E5

EQ = 1’b1; // True
C = c+2;
V1 = V2/5 3;Real

Time
1.0, 1.0E5
‘timescale 1ns/1ps

V1  V2/5.3;
#6 Q = 1’b1;

Register Single or array of bits
Character
String

Use 8-bit register
Use register of length 8 x the # of characters

g g y
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Design UnitsDesign Units

 Design units are a concept that provide 
advanced configuration management 
capabilities.

 Design units are modules of Verilog that 
can be compiled separately and storedcan be compiled separately and stored 
in a library.
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Library Design unitLibrary Design unit

 A Library is a collection of commonly 
used modules to be used globally 
among different design units.

 Library is identified with 
compiler/simulator command linecompiler/simulator command line 
switches.
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Levels of Abstraction (Styles)Levels of Abstraction (Styles)

 Verilog supports many possible styles of 
design description.

 These styles differ primarily in how These styles differ primarily in how 
closely they relate to the underlying 
hardwarehardware.
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Levels of Abstraction (Styles)Levels of Abstraction (Styles)

 Levels of Abstraction refers to how far 
your design description is from an 
actual hardware realization.

 The three main levels of abstraction e t ee a e e s o abst act o
are:
 Behavior Behavior
 Dataflow
 Structure
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 Levels of Abstraction (Styles)
 
 

P f S ifi i

Levels of Abstraction (Styles)

 

Behavior 
 

Performance Specification
Test Benches 

Sequential Description 
 
Dataflow 

State Machines
Register Transfers 

Selected Assignments
 
 

g
Arithmetic Operation 

Boolean Equations 
HierarchyStructure 

 

Hierarchy
Physical Information 
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Behavioral ModelingBehavioral Modeling

 The Highest Level of Abstraction 
Supported in Verilog.

 The Behavior Approach Describes the The Behavior Approach Describes the 
Actual Behavior of Signals Inside the 
ComponentComponent.
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Verilog Timing IssuesVerilog Timing Issues

 The Concept of Time Is the Critical 
Distinction Between Behavioral 
Descriptions and Low Level 
Descriptions.

 The Concept to Time May Be Expressed The Concept to Time May Be Expressed 
Precisely, With Actual Delays Between 
Related Events

35

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Related Events



A  E l  f B h i l M d li  A h lf ddAn Example of Behavioral Modeling: A half adder

sumsuma

carryb
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half adderhalf_adder

 Half Adder
 Inputs a, b : 1 bit each.Inputs a, b : 1 bit each.
 Output Sum, Carry : 1 bit each.

suma

b

carry

Figure 1-1 Half adder circuit
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Verilog Code for half adderVerilog Code for half_adder

// H lf Add// Half Adder
module half_adder (a, b, sum, carry);

input a, b;
output sum carry;output sum, carry;

reg sum, carry;

always @ (a or b) begin
sum = a ^ b;
carry = a & b;y ;

end
endmodule
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INTRODUCTION TO Verilog
PART II
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Dataflow ModelingDataflow Modeling

 The dataflow level of abstraction is often 
called Register Transfer Language (RTL).

 Some behavioral modeling can also be called 
RTLRTL.

 The dataflow level of abstraction describesThe dataflow level of abstraction describes 
how information is passed between registers 
in the circuit.

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Concurrent and Sequential VerilogConcurrent and Sequential Verilog

 Verilog Allows Both Concurrent and 
Sequential Statements to Be Entered.

 The Difference Between Concurrent and The Difference Between Concurrent and 
Sequential Statements Must Be Known 
for Effective Use of the Languagefor Effective Use of the Language.
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Concurrent VerilogConcurrent Verilog

 All Statements in the Concurrent Area 
Are Executed at the Same Time.

 There Is No Significance to the Order in There Is No Significance to the Order in 
Which Concurrent Statements Occur.
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Concurrent VerilogConcurrent Verilog

:

Statement

St t tStatement

StatementStatement

:
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Example of Concurrent VerilogExample of Concurrent Verilog

Full Adder

a
Sum

b
C out

Full-Adder
_

C_in
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Full Adder circuitFull Adder circuit

a s1a
b sum

s2

c in

 c_outs3

_
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Verilog code for Full AdderVerilog code for Full Adder

// Full Adder Using Signal Assignment Instructions
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;
output sum, c_out;

wire s1, s2, s3;

assign s1 = a ^ b;
assign s2 = s1 & c_in;
assign s3 = a & b;
assign sum = s1 ^ c_in;
assign c_out = s2 | s3;
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Verilog code for Full AdderVerilog code for Full Adder

 The assign expressions are all 
concurrent signal assignment g g
statements.  All the statements are 
executed at the same time.

assign s1 = a ^ b;
assign s2 = s1 & c_in;

i 3 & bassign s3 = a & b;
assign sum = s1 ^ c_in;
assign c out = s2 | s3;
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Verilog code for Full AdderVerilog code for Full Adder

 The simulator evaluates all the assign
expressions, and then applies the 

lt t th i lresults to the signals.

 Once the simulator has applied the 
results it waits for one of the signal to 
h d it l t ll thchange and it reevaluates all the 

expressions again.
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Verilog code for Full AdderVerilog code for Full Adder

 This cycle will continue until the 
simulation is completed.

 This is called “event driven simulation” This is called event driven simulation .

I i i ll ffi i h It is more computationally efficient than 
time driven simulation.
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WiresWires

 In the full_adder Verilog code we came across “wire”.

 So what are “wires”? So what are wires ?

 Wires Are Used to Carry Data From Place to Place in a 
Verilog Design Description.Verilog Design Description.

 Wires in Verilog Are Similar to Wires in a Schematic.

 Wires are internal to a module.
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Sequential VerilogSequential Verilog

 Sequential Statements Are Executed 
One After the Other in the Order That 
They Appear.

 Example of Sequential Statement: 
AlwaysAlways.
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Sequential Verilog

Begin

Sequential Verilog

Begin

St t tStatement

StatementStatement

StatementStatement

End
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Always ConstructAlways Construct

 The Always construct is the primary means to 
describe sequential operations.

 Always starts with the keyword always, then
b d d h h k d dbegin, and ends with  the keyword end.

 The whole always construct itself is treated as 
a concurrent statement.
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Always StatementAlways Statement

 The always construct consists of three 
parts

 Sensitivity List Sensitivity List
 Declaration Part
 Statement Part Statement Part

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Syntax of Always Statement

module module name ( … ports … );

Syntax of Always Statement

module module_name ( … ports … );
:

always @ (sensitivity_list)
begin : block_name

local_declaration;
……
sequential statement;
sequential statement;
……

end
endmodule
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Always Example

module nand2 (a, b, c);

Always Example

( , , );
input a, b;
output c;

reg c;

always @ (a or b)
begin : nand2 always blockbegin : nand2_always_block

reg temp;
temp = ~(a & b);
if (temp == 1’b1) #5 c = temp;if (temp == 1 b1) #5 c = temp;
else if (temp == 1’b0) #6 c = temp;

end
endmodule
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Example DescriptionExample Description

 The always sensitivity list enumerates 
exactly which signals causes the block 
to execute.

always @ (a or b)
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Example DescriptionExample Description

 The declarative part is used to declare 
local variables or constants that can be 
used in the block.

reg temp;
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Example DescriptionExample Description

 Variables are temporary storage areas 
similar to variables in software 
programming languages.

reg temp;
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Use of Sequential StatementsUse of Sequential Statements

 Sequential Statements Exist Inside the 
Always Statements As Well As in Sub 
Programs.

 The Sequential Statements Are:
if case forever repeatif case forever repeat
while for wait fork/join
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if Statementsif Statements

 The IF statement starts with the 
keyword if and ends with the keyword 
end.

if (x < 10) begin
a = b;

endend                 
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if Statementsif Statements

 There  are also two optional clauses
if (day == Sunday) begin

 else if clause
 else clause

if (day == Sunday) begin
weekend = true;          

end                                          
(d d ) else clause else if (day == Saturday) begin

weekend = true;         
end                                         
else begin 

weekday = true;         
end
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end



if Statementsif Statements

 The if statement can have multiple else 
if statement parts but only one else
statement part.

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Case StatementCase Statement

 The Case statement is used whenever a 
single expression value can be used to 

l t b t b f tiselect between a number of actions.

 A Case statement consists of the 
keyword case followed by an operator 

i d d d ithexpression, and ended with an 
endcase keyword.
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Case StatementCase Statement

 The expression will either return a value 
that matches one of the choices in a 
statement part or match a default
clause.
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Case Statement Example

[1 0] bit

Case Statement Example

reg [1:0] bit_vec;
……
case bit_vec

2’b00 :2 b00 :
return = 0;
2’b01 :
return = 1;return  1;
2’b10 :
return = 2;
2’b11 :
return = 3;

endcase
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Loop StatementsLoop Statements

 The loop statement is used whenever an 
operation needs to be repeated.

 Loop statements are implemented in three 
waysways

 repeat condition loop statementp p
 while condition loop statement
 for condition loop statement
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Loop Statements (repeat)Loop Statements (repeat)

 The repeat condition Loop statement 
will loop as many times as the condition 
expression.

repeat (flag) begin
day =  get_next_day (day);y g _ _ y ( y)

end
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Loop Statements (while)Loop Statements (while)

 The while condition Loop statement 
will loop as long as the condition 
expression is TRUE.

while (day == weekday) begin
day =  get_next_day (day);y g _ _ y ( y)

end
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Loop Statements (for loop)Loop Statements (for loop)

for (i = 1; i <= 10; i = i + 1) begin
i_squared[i] = i*i;

endend

 This loop will execute 10 times p
whenever execution begins and its 
function is to calculate squares from 1 q
to 10 and insert them into i_squared 
memory.
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Wait StatementWait Statement

 The wait statement allows  to suspend 
the sequential execution based on a 
conditional expression.

 wait until  an expression is true.

wait (conditional expression)
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Wait StatementWait Statement

 The wait conditional expression clause p
will suspend execution of the process 
until the expression returns a true p
value.

initial
begin                                           

wait (!oe)wait (!oe)                                                
o = q;                                 

end              
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Structural VerilogStructural Verilog

 Structural-level design methods can be 
useful for managing the complexity of a 
large design description.

 Structure level of abstraction is used to 
combine multiple components to form acombine multiple components to form a 
larger circuit.
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Structural VerilogStructural Verilog

 Structural Verilog Descriptions Are Quite 
Similar in Format to Schematic Netlists.

 Larger Circuits Can Be Constructed 
From Smaller Building BlocksFrom Smaller Building Blocks.
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Example of Structural VerilogExample of Structural Verilog

Let us consider an ALU with
 An OR gateAn OR gate
 An XOR gate

A Half Adder A Half Adder
 A Full Adder
 A Multiplexer
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Example of Structural 
VerilogVerilog

ALU

OR 
gate

XOR
gate

Half 
Adder

Full
Adder Mux
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ALU – Block Diagram

s1 s0

ALU Block Diagram

   a
b

s1 s0

   b

4 to 1   Z

         C_out

4 to 1
muxhalf

adder

c_in

full
adder
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ALU – Function TableALU Function Table

S1 S0 Z C outS1 S0 Z C_out
0 0 a or b 0
0 1 a xor b 00 1 a xor b 0
1 0 ha_sum ha_c_out
1 1 fa sum fa c out

   a
   b

s1 s0

1 1 fa_sum fa_c_out

   Z

         C_out

4 to 1
muxhalf

adder

full
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Verilog code for OR gateVerilog code for OR gate

module t or (a b ored);module t_or (a, b, ored);
input a, b;
output ored;p ;

assign ored = a | b;
endmodule

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Verilog code for XORVerilog code for XOR

d l t ( b d)module t_xor (a, b, xored);
input a, b;
output xored;

assign xored = a ^ b;
d d lendmodule
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Verilog Code for half adderVerilog Code for half_adder

// Half Adder
module half_adder (a, b, sum, c_out);

input a, b;          // declaring I/O ports
output sum, c_out;

assign sum = a ^ b;

sum

carry

a

b

g ;
assign c_out = a & b;

endmodule

Figure 1-1 Half adder circuit
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Full Adder circuitFull Adder circuit

a s1a
b sum

s2

c in

 c_outs3

_
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Verilog code for full adderVerilog code for full_adder

// F ll Add// Full Adder
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;
output sum, c_out;

wire s1, s2, s3;

assign s1 = a ^ b;
i 2 i & 1assign s2 = c_in & s1;

assign s3 = a & b;
assign sum = a ^ b;
assign c_out = s2 | s3;

d d lendmodule

// Using Signal Assignment Instructions
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Main Code for ALUMain Code for ALU

module alu (a b c in s0 s1 z c out);module alu (a, b, c_in, s0, s1, z, c_out);
input a, b, c_in, s0, s1;
output z, c_out;

reg z, c_out;

wire ored, xored, ha_sum, ha_c_out, fa_sum, fa_c_out;

t_or a1 (.a(a), .b(b), .ored(ored));
t_xor x1 (.a(a), .b(b), .xored(xored));
half_adder h1 (.a(a), .b(b), .sum(ha_sum),

(h )).c_out(ha_c_out));
full_adder f1 (.a(a), .b(b), .c_in(c_in), .sum(fa_sum),

.c_out(fa_c_out));

84

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Main Code for ALU Cont….

always @ (a or b or c_in or s0 or s1) begin

Main Code for ALU Cont….

y ( _ ) g
if (s1 == 1’b0 && s0 == 1’b0) begin

z = ored;
c_out = 1’b0;

end
if (s1 == 1’b0 && s0 == 1’b1) beginif (s1 == 1 b0 && s0 == 1 b1) begin

z = xored;
c_out = 1’b0;

end
if (s1 == 1’b1 && s0 == 1’b0) begin

z = ha_sum;
c_out = ha_c_out;

end
if (s1 == 1’b1 && s0 = 1’b1) begin

z = fa sum;z  fa_sum;
c_out = fa_c_out;

end
end

endmodule
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CONTROL AND DATA PATH 
ORGANIZATION

86

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Control and Data Path OrganizationControl and Data Path Organization

 Most complex digital circuits can be 
broken up into two parts:
 Control
 Data Path
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Control and Data Path OrganizationControl and Data Path Organization

DATACONTROL
INPUTS

CONTROL
PROCESSING

DATA
PROCESSING

CONTROL

PROCESSING
BLOCK

PROCESSING
BLOCK

OBSERVATION

STATUS
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Finite State MachinesFinite State Machines

 Two Classes of Finite State Machines 
(FSMs):
 Moore Machines
 Mealy Machinesy
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Moore Finite State Machines

 Outputs depend only on the state

Moore Finite State Machines

 State and Outputs Processing are 
combinational elements

 State Vector is Sequential Elements
CLOCK

STATE OUTPUTSNEXT STATE OUTPUTSINPUTS
STATE

VECTOR
OUTPUTS

PROCESSING
NEXT STATE
PROCESSING

OUTPUTS
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Mealy Finite State Machines

 Outputs depend on the state and the 
i t

Mealy Finite State Machines

inputs

CLOCK

STATE OUTPUTSNEXT STATE OUTPUTSINPUTS
STATE

VECTOR
OUTPUTS

PROCESSING
NEXT STATE
PROCESSING

OUTPUTS
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Verilog IMPLEMENTATION 
EXAMPLES – A Decimation Filter for 

a Sigma-Delta Analog to Digital 
Converter
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2-Ch Σ-Δ Analog to Digital Converter2 Ch Σ Δ Analog to Digital Converter

RSTN

Clock GenerationG3 
SYNC

G2
G1

CLK
PD1
PD2
PD3

RSTN

V1P

V1N x1, x2, x8, x16

PGA Integrators / Comparator

 Digital Filter
(Sinc3)

G0

CMP1

Digital Filter
(Sinc3)

Digital Design

V21P

V21N
PGA Integrators / Comparator

x1, x2, x8, x16



2nd Order  Modulators

CMP2

Bandgap
~ 1.25V

Analog Design

2 Order  Modulators
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2nd Order Σ-Δ Modulator 
(block/algorithmic)(block/algorithmic)

z-1
IN

OUT
1 / CFA CX / CFBCIN

CY / CFB
z-1

CREF

 This can be modeled in Behavioral Verilog
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2nd Order Σ-Δ Modulator 
(circuit)(circuit)

VCMI

CFA CY

VCMI

CAZ

CIN CX CFBAZB

AZB

AZT1

T2

B1

B2

B2 S1

B1 S2

IN+

AMP1 AMP2

VCMI

CAZ

VCMI

CIN CX CFBAZBAZ

T2

T1

B2

B1 B2

B1 S2

S1

STRB

IN-

CFA CY

CREF B1

B2
REF+

FL

“1”

“0”

VCMI

CREF

B2

B1
REF-

FL

“0”

“1”
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 This can also be modeled in Behavioral Verilog



Decimation Digital FilterDecimation Digital Filter

z-1 z-1 z-1

IN

fs fs / OSR

OUT

z-1 z-1 z-1

fs / OSR
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Decimation Digital FilterDecimation Digital Filter

 Cubic sinc
 Bits of noise free accuracy for delta-Bits of noise free accuracy for delta

sigma ADC's:
 BITS = 3 * LOG(OSR) / LOG(2) + 2 BITS  3  LOG(OSR) / LOG(2) + 2
 Assume OSR=32, then BITS=17, and set 

BITS=16
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Decimation Digital FilterDecimation Digital Filter

 First Filter Equations
 H1(z) = Y1(z)/X(z) = 1/(1 - 3 z-1 + 3 z-2 - z-3)
 y1(n) = x(n) + 3 y1(n-1) - 3 y1(n-2) + y1(n-3)

 Second Filter Equations
( ) ( )/ ( ) 1 2 3 H2(z) = Y(z)/X1(z) = 1 - 3 z-1 + 3 z-2 - z-3

 y(n) = x1(n) - 3 x1(n-1) + 3 x1(n-2) - x1(n-3)
Decimation (Retiming) Decimation (Retiming)
 x1(n)=y1(n/OSR)
 x (n)=y (n/32)
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 x1(n)=y1(n/32)



What do we need for our design?What do we need for our design?
 y1(n) = x(n) + 3 y1(n-1) - 3 y1(n-2) + y1(n-3)
 y(n) = x1(n) - 3 x1(n-1) + 3 x1(n-2) - x1(n-3)
 x1(n)=y1(n/32)

 Control
 On every x(n)

 S02: Store x(n) in accumulator, count x(n) mod 32
S03 A l 2 ( 1)

 Data Path
 16 bits
 Adder-Accumulator

 S03: Accumulate 2 y1(n-1)
 S04: Accumulate y1(n-1)
 S05: Accumulate 1’s complement of 2 y1(n-2)
 S06: Accumulate 1’s complement of y1(n-2)
 S07: Accumulate 2
 S08: Accumulate y1(n-3)

 1’s complement
 Shift left by one (x 2)
 Store y1(n-1), y1(n-2), y1(n-3)
 Store x1(n-1), x1(n-2), x1(n-3)

Constants: 2 & 3 S08: Accumulate y1(n 3)
 S09: Update y registers

 On every x1(n) (every 32nd y1(n))
 S10: Accumulate 1’s complement of 2 x1(n-1)
 S11: Accumulate 1’s complement of x1(n-1)
 S12: Accumulate 2 x1(n-2)

 Constants: 2 & 3

1( )
 S13: Accumulate x1(n-2)
 S14: Accumulate 1’s complement of x1(n-3)
 S15: Accumulate 3, output result
 S16: Store y1(n-1) in accumulator
 S17: Update x registers
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Decimation Digital Filter ArchitectureDecimation Digital Filter Architecture

Ry1_n_1 Ry1_n_2 Ry1_n_3 Rx1_n_1 Rx1_n_2 Rx1_n_3

URy

S1 CONTROLLER
URx

x2, PASS

1’S COMP., PASS, 2, 3 

S2

S3

S1

S2

S3

xn

S3

S4

URy
DATA-
PATH

ACCUMULATOR

xn
S4 URx

OSS

ISS
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Verilog code for Data PathVerilog code for Data_Path

// h// Data_Path
module Data_Path (CLK, reset, xn, URy, URx,

S2 S3 S4 S1S2, S3, S4, S1,
OUTPUT);

input CLK, reset, xn, URy, URx, S2;
input [1:0] S3, S4;
input [2:0] S1;
output [15:0] OUTPUT;
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Verilog code for Data Path
reg [15:0] Ry1_n_1, Ry1_n_2, Ry1_n_3;
reg [15:0] Rx1_n_1, Rx1_n_2, Rx1_n_3;

[15 0] ACCUMULATOR

Verilog code for Data_Path
3’b010 : T1 = Ry1_n_3;
3’b011 : T1 = Rx1_n_1;
3’b100 T1 R 1 2reg [15:0] ACCUMULATOR;

parameter my_zero = 16’b0000000000000000;

reg [15:0] T1, T2, T3, T4, T5;
reg my_msb;

3’b100 : T1 = Rx1_n_2;
3’b101 : T1 = Rx1_n_3;

endcase
case (S2)

1’b0 :
my_msb = T1[15];
T2 = T1 << 1;

assign OUTPUT = ACCUMULATOR;

always @ (posedge CLK or reset) begin
if (reset == 1’b1) begin

Ry1_n_1 = my_zero; Ry1_n_2 = my_zero; Ry1_n_3 = my_zero;
Rx1_n_1 = my_zero; Rx1_n_2 = my_zero; Rx1_n_3 = my_zero;

T2 = T1 << 1;
T3 = T2 & 16’b0111111111111111;
T4 = T3 | {my_msb, 15’b000000000000000};

1’b1 : T4 = T1;
endcase
case (S3)

2’b00 : T5 = ~T4;
ACCUMULATOR = my_zero;

else if (CLK == 1’b1) begin
if (URy == 1’b1) begin
Ry1_n_3 = Ry1_n_2; Ry1_n_2 = Ry1_n_1;
Ry1_n_1 = ACCUMULATOR;

end
if (URx == 1’b1) begin

2’b01 : T5 = T4;
2’b10 : T5 = 16’b0000000000000010;
2’b11 : T5 = 16’b0000000000000011;

endcase
case (S4)

2’b00 : ACCUMULATOR = {15’b000000000000000, xn};
2’b01 : ACCUMULATOR = Ry1 n 1;if (URx == 1 b1) begin

Rx1_n_3 = Rx1_n_2; Rx1_n_2 = Rx1_n_1;
Rx1_n_1 = ACCUMULATOR;

end
case (S1)

3’b000 : T1 = Ry1_n_1;
3’b001 : T1 = Ry1_n_2;

2 b01 : ACCUMULATOR = Ry1_n_1;
2’b10 : ACCUMULATOR = ACCUMULATOR + T5;

endcase
end

end
endmodule
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Verilog code for ControllerVerilog code for Controller

// Controller
module Controller (CLK, reset, ISS, URy, URx,

S2, OSS, S3, S4, S1);

input CLK, reset, ISS;
output URy, URx, S2, OSS;p y, , , ;
output [1:0] S3, S4;
output [2:0] S1;
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output [2:0] S1;



Verilog code for Controller

parameter S00 = 5’h00, S01 = 5’h01, S02 = 5’h02, S03 = 5’h03,
S04 = 5’h04, S05 = 5’h05, S06 = 5’h06, S07 = 5’h07, S08 = 5’h08,

Verilog code for Controller

if (PRState == S03 || PRState == S05 ||S04  5 h04, S05  5 h05, S06  5 h06, S07  5 h07, S08  5 h08,
S09 = 5’h09, S10 = 5’h0A, S11 = 5’h0B, S12 = 5’h0C, S13 = 5’h0D,
S14 = 5’h0E, S15 = 5’h0F, S16 = 5’h10, S17 = 5’h11;

reg URy, URx, S2, OSS;
reg [1:0] S3, S4;
reg [2:0] S1;

PRState == S10 || PRState == S12) S2 = 1’b0;
else S2 = 1’b1;
if (PRState == S05 || PRState == S06 ||

PRState == S10 || PRState == S11 ||
PRState == S14) S3 = 2’b00;

else if (PRState S07) S3 2’b10;
reg [4:0] PRState, NXState;

reg [4:0] Counter;

always @ (PRState) begin
if (PRState == S09) URy = 1’b1;

else if (PRState == S07) S3 = 2’b10;
else if (PRState == S15) S3 = 2’b11;
else S3 = 2’b01;
if (PRState == S02) S4 = 2’b00;
else if (PRState == S16) S4 = 2’b01;
else S4 = 2’b10;if (PRState == S09) URy = 1 b1;

else URy = 1’b0;
if (PRState == S17) URx = 1’b1;
else URx = 1’b0;
if (PRState == S05 || PRState == S06) S1 = 3’b001;
else if (PRState == S08) S1 = 3’b010;
else if (PRState == S10 || PRState == S11) S1 = 3’b011;

else S4  2 b10;
if (PRState == S15) OSS = 1’b1;
else OSS = 1’b0;

end

else if (PRState == S12 || PRState == S13) S1 = 3’b100;
else if (PRState == S14) S1 = 3’b101;
else S1 = 3’b000;
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Verilog code for Controller
always @ (posedge CLK or reset) begin

if (reset == 1’b1) begin

Verilog code for Controller
S07 : NXState = S08;
S08 : NXState = S09;if (reset == 1 b1) begin

PRState = S00;
Counter = 5’b00000;

end
else begin

PRSt t NXSt t

S08 : NXState = S09;
S09 : if (Counter == 5’b00000) NXState = S10;

else NXState = S01;
S10 : NXState = S11;
S11 : NXState = S12;
S12 NXSt t S13PRState = NXState;

if (Counter == 5’b11111) Counter = 5’b00000;
else Counter = Counter + 5’b00001;

end
end

S12 : NXState = S13;
S13 : NXState = S14;
S14 : NXState = S15;
S15 : NXState = S16;
S16 : NXState = S17

always @ (PRState or ISS) begin
case (PRState)

S00 : if (ISS == 1’b1) NXState = S02;
S01 : if (ISS == 1’b1) NXState = S02;
S02 : NXState S03;

S17 : NXState = S01;
endcase

end
endmodule

S02 : NXState = S03;
S03 : NXState = S04;
S04 : NXState = S05;
S05 : NXState = S06;
S06 : NXState = S07;
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Main Code for FILTERMain Code for FILTER

module FILTER (reset, CLK, ISS, xn,
OSS, OUTPUT);, );

input reset CLK ISS xn;input reset, CLK, ISS, xn;
output OSS;
output [15:0] OUTPUT;
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Main Code for FILTER Cont…
wire URy, URx, S2;
wire [1:0] S3 S4;

Main Code for FILTER Cont…

wire [1:0] S3, S4;
wire [2:0] S1;

Controller c ( CLK(CLK) reset(reset)Controller c (.CLK(CLK), .reset(reset),
.ISS(ISS), .URy(URy), .URx(URx), .S2(S2),
.OSS(OSS), .S3(S3), .S4(S4), .S1(S1));

Data_Path dp (.CLK(CLK), .reset(reset),_ p ( ( ), ( ),
.xn(xn), .URy(URy), .URx(URx), .S2(S2),
.S3(S3), .S4(S4), .S1(S1), .OUTPUT(OUTPUT));

endmodule
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ConclusionsConclusions
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ConclusionsConclusions
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Thanks……Thanks……

h d @t j dhernande@tcnj.edu

http://www tcnj edu/~hernande/
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