
“A Verilog Overview”A Verilog Overview
by

Orlando J. Hernandez, Ph.D.
Electrical & Computer Engineeringp g g

School of Engineering
THE COLLEGE OF NEW JERSEY

Presentation OverviewPresentation Overview

 Introduction to Verilog – Part I
 Introduction to Verilog – Part II

 AND, OR, HALF ADDER, FULL ADDER
 Introduction to Verilog – Part IIIg

 ALU Design
 Control and Data Path Organization

 Finite State Machines, Digital Filter, g
 Q&A Sessions

2

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

INTRODUCTION TO Verilog
PART I

3

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Design AutomationDesign Automation

 Need To Keep With Rapid Changes,
Electronic Products Have To Be
D i d E t l Q i klDesigned Extremely Quickly

 Electronic Design Automation (EDA)
 Design Entry
 Simulation

S th i Synthesis
 Design Validation & Test

4

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Design Automation. Cont…Design Automation. Cont…

D i E t Design Entry
 Schematic Capture

Q

Q
SET

S

R

5

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Q
CLR

R

Design Automation. Cont…Design Automation. Cont…

 Design Entry - Textual Form:
 Verilog
 VHDL (VHSIC Hardware Description

Language)
 VHSIC (Very High Speed Integrated

Circuits)

6

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Design Automation. Cont…Design Automation. Cont…

 Design Entry - Textual Form:

module and_2 (X, Y, Z);
input X Y;input X, Y;
output Z;

assign Z = X & Y;
endmodule

7

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Introduction To VerilogIntroduction To Verilog

 Verilog Is an Industry Standard
Language to Describe Hardware From
the Abstract to Concrete Level.

8

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

BRIEF HISTORY OF VerilogBRIEF HISTORY OF Verilog

i d b C d Began as a proprietary HDL promoted by Cadence
Design Systems.

 Cadence transferred control of Verilog to a
consortium of companies and universities known as
Open Verilog International (OVI).

 Verilog is an IEEE Standard (IEEE Standard 1364-
1995).

 Verilog continues to be extended and upgraded (IEEE
Standard 1364-2000, System Verilog).

9

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

, y g)

MOTIVATIONMOTIVATION

 Need a Method to Quickly Design,
Implement, Test and Document
I i l C l Di it l S tIncreasingly Complex Digital Systems.

 Schematic and Boolean Equations
Inadequate for Million-Gate ICs.

 Design Portability

10

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

What is Verilog?What is Verilog?

 A Design entry language
 A Simulation modeling language.A Simulation modeling language.
 A Verification language.

A Standard language A Standard language.
 As simple or complex as required.

11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

How is Verilog Used?How is Verilog Used?

 For Design Specification (“Specify”) Specify

 For Design Entry (“Capture”)

Fo Design Sim lation (“Ve if ”)

Capture

Verify For Design Simulation (“Verify”)

 For Design Documentation (“Formalize”)

Verify

Formalize For Design Documentation (Formalize)

 As an Alternate to Schematics

Formalize

Implement

12

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Design Process (e. g. for FPGAs)Design Process (e. g. for FPGAs)

 Verilog Can Be Used for Both Design
and Test Development

Design Entry Test Development

Synthesis Functional Simulation

Device Mapping Timing Simulation

Device

13

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

When Should Verilog Be Used?When Should Verilog Be Used?

 Verilog is highly beneficial to use as a
structured, top down approach to
design.

 Verilog makes it easy to build, use, and e og a es t easy to bu d, use, a d
reuse libraries of circuit elements.

 Verilog can greatly improve your Verilog can greatly improve your
chances of moving into more advanced
tools and design flows

14

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

tools and design flows.

Advantages of VerilogAdvantages of Verilog

 The Ability to Code the Behavior and to
Synthesize an Actual Circuit.

 Power and Flexibility

 Device (specific FPGA) Independent Design

 Technology (specific silicon process)
Independent Design

15

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

p g

Advantages of Verilog Cont…Advantages of Verilog Cont…

 Portability Among Tools and Devices

 Fast Switch Level Simulations

 Quick Time to Market and Low Cost

 Industry Standard

16

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y

Getting Started with VerilogGetting Started with Verilog

 Its Easy To Get Started With Verilog,
But It Can Be Difficult To Master It.

 To Begin With, A Subset of The
Language Can Be Learned To Write
U f l M d lUseful Models.

 Later, More Complex Features Can Be
L d T I l t C lLearned To Implement Complex
Circuits, Libraries, And APIs.

17

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

A First look at VerilogA First look at Verilog

 Lets start with a simple Combinational
circuit: an 8-bit Comparatorcircuit: an 8 bit Comparator.

18

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

An 8 Bit ComparatorAn 8 Bit Comparator

 Comparator Specifications:
 Two 8-bit inputsp
 1-bit Output
 Output is 1 if the inputs match or 0 if they p p y

differ.

19

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

An 8 Bit ComparatorAn 8 Bit Comparator

Comparator

A[8]

EQB[8] EQB[8]

0 1 2 3 4 5 6 7
A 1 0 1 1 0 0 1 1

20

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

B 1 0 1 1 0 0 1 1

Comparator Verilog Source Code

// Eight-bit Comparator

Comparator Verilog Source Code

module compare (A, B, EQ)
input [7:0] A, B;
output EQ;output EQ;

assign EQ = (A == B);
endmodule

Define the inputs and outputs - the ports of the circuit

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

p p p
Define the function of the circuit

What is a moduleWhat is a module

 Every Verilog design description has at least
one module construct.

 A large design has many modules and are
connected to form the complete circuitconnected to form the complete circuit.

 The module port declarations describe theThe module port declarations describe the
circuit as it appears from “outside”- from
perspective of its input and output interfaces.

22

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

What is a module?

d l (A B EQ)

What is a module?

module compare (A, B, EQ)
input [7:0] A, B;
output EQ;

::
:

 The module and port declarations includes a name, The module and port declarations includes a name,
compare, and port direction statements defining all
the inputs and outputs of the module.

 The Rest of the module Describes the Actual Function.

23

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

What is a module?What is a module?

:
:

assign EQ = (A == B);assign EQ (A B);
endmodule

 Before the keyword endmodule is found
the actual functional description of thethe actual functional description of the
comparator.

24

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Data TypesData Types

 Verilog’s high level data types allow
data to be represented in much the
same way as in high-level programming
languages.

 A data type is an abstract A data type is an abstract
representation of stored data.

25

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Data TypesData Types

 These data types might represent
individual wires in a circuit, or a
collection of wires.

26

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Data TypesData Types

B i D T Basic Data Types
 Nets

 wire, wand, tri, wor
 Continuously driven
 Gets new value when driver changes
 LHS of continuous assignment

tri [15:0] data;
// unconditional

assign data[15:0] = data_in;
// conditional

assign data[15:0] = enable ? data_in : 16’bz;
R i t Registers

 Reg
 Represents storage
 Always stores last assigned value
 LHS of an assignment in a procedural block

reg signal;reg signal;
@(posedge clock) signal = 1’b1;

// possitive edge
@(reset) signal = 1’b0; // event (both edges)

27

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Some Data Types
Data Type Values Examples

Some Data Types

Bit
Array of bits
B l

'1' , '0' , 'x' , 'z'
"101001"
U Bit

Q = 1’b1;
Data[5:0] = 6’b101001;
EQ 1’b1 // TBoolean

Integer
Real

Use Bit
-2, -1, 0, 1, 2, 3
1 0 -1 0E5

EQ = 1’b1; // True
C = c+2;
V1 = V2/5 3;Real

Time
1.0, 1.0E5
‘timescale 1ns/1ps

V1 V2/5.3;
#6 Q = 1’b1;

Register Single or array of bits
Character
String

Use 8-bit register
Use register of length 8 x the # of characters

g g y

28

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Design UnitsDesign Units

 Design units are a concept that provide
advanced configuration management
capabilities.

 Design units are modules of Verilog that
can be compiled separately and storedcan be compiled separately and stored
in a library.

29

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Library Design unitLibrary Design unit

 A Library is a collection of commonly
used modules to be used globally
among different design units.

 Library is identified with
compiler/simulator command linecompiler/simulator command line
switches.

30

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Levels of Abstraction (Styles)Levels of Abstraction (Styles)

 Verilog supports many possible styles of
design description.

 These styles differ primarily in how These styles differ primarily in how
closely they relate to the underlying
hardwarehardware.

31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Levels of Abstraction (Styles)Levels of Abstraction (Styles)

 Levels of Abstraction refers to how far
your design description is from an
actual hardware realization.

 The three main levels of abstraction e t ee a e e s o abst act o
are:
 Behavior Behavior
 Dataflow
 Structure

32

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Structure

 Levels of Abstraction (Styles)

P f S ifi i

Levels of Abstraction (Styles)

Behavior

Performance Specification
Test Benches

Sequential Description

Dataflow

State Machines
Register Transfers

Selected Assignments

g
Arithmetic Operation

Boolean Equations
HierarchyStructure

Hierarchy
Physical Information

33

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Behavioral ModelingBehavioral Modeling

 The Highest Level of Abstraction
Supported in Verilog.

 The Behavior Approach Describes the The Behavior Approach Describes the
Actual Behavior of Signals Inside the
ComponentComponent.

34

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog Timing IssuesVerilog Timing Issues

 The Concept of Time Is the Critical
Distinction Between Behavioral
Descriptions and Low Level
Descriptions.

 The Concept to Time May Be Expressed The Concept to Time May Be Expressed
Precisely, With Actual Delays Between
Related Events

35

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Related Events

A E l f B h i l M d li A h lf ddAn Example of Behavioral Modeling: A half adder

sumsuma

carryb

36

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

half adderhalf_adder

 Half Adder
 Inputs a, b : 1 bit each.Inputs a, b : 1 bit each.
 Output Sum, Carry : 1 bit each.

suma

b

carry

Figure 1-1 Half adder circuit

37

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog Code for half adderVerilog Code for half_adder

// H lf Add// Half Adder
module half_adder (a, b, sum, carry);

input a, b;
output sum carry;output sum, carry;

reg sum, carry;

always @ (a or b) begin
sum = a ^ b;
carry = a & b;y ;

end
endmodule

38

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

INTRODUCTION TO Verilog
PART II

39

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Dataflow ModelingDataflow Modeling

 The dataflow level of abstraction is often
called Register Transfer Language (RTL).

 Some behavioral modeling can also be called
RTLRTL.

 The dataflow level of abstraction describesThe dataflow level of abstraction describes
how information is passed between registers
in the circuit.

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concurrent and Sequential VerilogConcurrent and Sequential Verilog

 Verilog Allows Both Concurrent and
Sequential Statements to Be Entered.

 The Difference Between Concurrent and The Difference Between Concurrent and
Sequential Statements Must Be Known
for Effective Use of the Languagefor Effective Use of the Language.

41

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concurrent VerilogConcurrent Verilog

 All Statements in the Concurrent Area
Are Executed at the Same Time.

 There Is No Significance to the Order in There Is No Significance to the Order in
Which Concurrent Statements Occur.

42

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concurrent VerilogConcurrent Verilog

:

Statement

St t tStatement

StatementStatement

:

43

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Example of Concurrent VerilogExample of Concurrent Verilog

Full Adder

a
Sum

b
C out

Full-Adder
_

C_in

44

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Full Adder circuitFull Adder circuit

a s1a
b sum

s2

c in

 c_outs3

_

45

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for Full AdderVerilog code for Full Adder

// Full Adder Using Signal Assignment Instructions
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;
output sum, c_out;

wire s1, s2, s3;

assign s1 = a ^ b;
assign s2 = s1 & c_in;
assign s3 = a & b;
assign sum = s1 ^ c_in;
assign c_out = s2 | s3;

46

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

endmodule

Verilog code for Full AdderVerilog code for Full Adder

 The assign expressions are all
concurrent signal assignment g g
statements. All the statements are
executed at the same time.

assign s1 = a ^ b;
assign s2 = s1 & c_in;

i 3 & bassign s3 = a & b;
assign sum = s1 ^ c_in;
assign c out = s2 | s3;

47

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ass g c_out s | s3;

Verilog code for Full AdderVerilog code for Full Adder

 The simulator evaluates all the assign
expressions, and then applies the

lt t th i lresults to the signals.

 Once the simulator has applied the
results it waits for one of the signal to
h d it l t ll thchange and it reevaluates all the

expressions again.

48

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for Full AdderVerilog code for Full Adder

 This cycle will continue until the
simulation is completed.

 This is called “event driven simulation” This is called event driven simulation .

I i i ll ffi i h It is more computationally efficient than
time driven simulation.

49

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

WiresWires

 In the full_adder Verilog code we came across “wire”.

 So what are “wires”? So what are wires ?

 Wires Are Used to Carry Data From Place to Place in a
Verilog Design Description.Verilog Design Description.

 Wires in Verilog Are Similar to Wires in a Schematic.

 Wires are internal to a module.

50

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Sequential VerilogSequential Verilog

 Sequential Statements Are Executed
One After the Other in the Order That
They Appear.

 Example of Sequential Statement:
AlwaysAlways.

51

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Sequential Verilog

Begin

Sequential Verilog

Begin

St t tStatement

StatementStatement

StatementStatement

End

52

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

End

Always ConstructAlways Construct

 The Always construct is the primary means to
describe sequential operations.

 Always starts with the keyword always, then
b d d h h k d dbegin, and ends with the keyword end.

 The whole always construct itself is treated as
a concurrent statement.

53

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Always StatementAlways Statement

 The always construct consists of three
parts

 Sensitivity List Sensitivity List
 Declaration Part
 Statement Part Statement Part

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Syntax of Always Statement

module module name (… ports …);

Syntax of Always Statement

module module_name (… ports …);
:

always @ (sensitivity_list)
begin : block_name

local_declaration;
……
sequential statement;
sequential statement;
……

end
endmodule

55

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

endmodule

Always Example

module nand2 (a, b, c);

Always Example

(, ,);
input a, b;
output c;

reg c;

always @ (a or b)
begin : nand2 always blockbegin : nand2_always_block

reg temp;
temp = ~(a & b);
if (temp == 1’b1) #5 c = temp;if (temp == 1 b1) #5 c = temp;
else if (temp == 1’b0) #6 c = temp;

end
endmodule

56

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

endmodule

Example DescriptionExample Description

 The always sensitivity list enumerates
exactly which signals causes the block
to execute.

always @ (a or b)

57

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Example DescriptionExample Description

 The declarative part is used to declare
local variables or constants that can be
used in the block.

reg temp;

58

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Example DescriptionExample Description

 Variables are temporary storage areas
similar to variables in software
programming languages.

reg temp;

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Use of Sequential StatementsUse of Sequential Statements

 Sequential Statements Exist Inside the
Always Statements As Well As in Sub
Programs.

 The Sequential Statements Are:
if case forever repeatif case forever repeat
while for wait fork/join

60

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

if Statementsif Statements

 The IF statement starts with the
keyword if and ends with the keyword
end.

if (x < 10) begin
a = b;

endend

61

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

if Statementsif Statements

 There are also two optional clauses
if (day == Sunday) begin

 else if clause
 else clause

if (day == Sunday) begin
weekend = true;

end
(d d) else clause else if (day == Saturday) begin

weekend = true;
end
else begin

weekday = true;
end

62

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

end

if Statementsif Statements

 The if statement can have multiple else
if statement parts but only one else
statement part.

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Case StatementCase Statement

 The Case statement is used whenever a
single expression value can be used to

l t b t b f tiselect between a number of actions.

 A Case statement consists of the
keyword case followed by an operator

i d d d ithexpression, and ended with an
endcase keyword.

64

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Case StatementCase Statement

 The expression will either return a value
that matches one of the choices in a
statement part or match a default
clause.

65

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Case Statement Example

[1 0] bit

Case Statement Example

reg [1:0] bit_vec;
……
case bit_vec

2’b00 :2 b00 :
return = 0;
2’b01 :
return = 1;return 1;
2’b10 :
return = 2;
2’b11 :
return = 3;

endcase

66

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loop StatementsLoop Statements

 The loop statement is used whenever an
operation needs to be repeated.

 Loop statements are implemented in three
waysways

 repeat condition loop statementp p
 while condition loop statement
 for condition loop statement

67

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loop Statements (repeat)Loop Statements (repeat)

 The repeat condition Loop statement
will loop as many times as the condition
expression.

repeat (flag) begin
day = get_next_day (day);y g _ _ y (y)

end

68

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loop Statements (while)Loop Statements (while)

 The while condition Loop statement
will loop as long as the condition
expression is TRUE.

while (day == weekday) begin
day = get_next_day (day);y g _ _ y (y)

end

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loop Statements (for loop)Loop Statements (for loop)

for (i = 1; i <= 10; i = i + 1) begin
i_squared[i] = i*i;

endend

 This loop will execute 10 times p
whenever execution begins and its
function is to calculate squares from 1 q
to 10 and insert them into i_squared
memory.

70

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y

Wait StatementWait Statement

 The wait statement allows to suspend
the sequential execution based on a
conditional expression.

 wait until an expression is true.

wait (conditional expression)

71

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Wait StatementWait Statement

 The wait conditional expression clause p
will suspend execution of the process
until the expression returns a true p
value.

initial
begin

wait (!oe)wait (!oe)
o = q;

end

72

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Structural VerilogStructural Verilog

 Structural-level design methods can be
useful for managing the complexity of a
large design description.

 Structure level of abstraction is used to
combine multiple components to form acombine multiple components to form a
larger circuit.

73

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Structural VerilogStructural Verilog

 Structural Verilog Descriptions Are Quite
Similar in Format to Schematic Netlists.

 Larger Circuits Can Be Constructed
From Smaller Building BlocksFrom Smaller Building Blocks.

74

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Example of Structural VerilogExample of Structural Verilog

Let us consider an ALU with
 An OR gateAn OR gate
 An XOR gate

A Half Adder A Half Adder
 A Full Adder
 A Multiplexer

75

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Example of Structural
VerilogVerilog

ALU

OR
gate

XOR
gate

Half
Adder

Full
Adder Mux

76

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ALU – Block Diagram

s1 s0

ALU Block Diagram

 a
b

s1 s0

 b

4 to 1 Z

 C_out

4 to 1
muxhalf

adder

c_in

full
adder

77

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ALU – Function TableALU Function Table

S1 S0 Z C outS1 S0 Z C_out
0 0 a or b 0
0 1 a xor b 00 1 a xor b 0
1 0 ha_sum ha_c_out
1 1 fa sum fa c out

 a
 b

s1 s0

1 1 fa_sum fa_c_out

 Z

 C_out

4 to 1
muxhalf

adder

full

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

c_in

full
adder

Verilog code for OR gateVerilog code for OR gate

module t or (a b ored);module t_or (a, b, ored);
input a, b;
output ored;p ;

assign ored = a | b;
endmodule

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for XORVerilog code for XOR

d l t (b d)module t_xor (a, b, xored);
input a, b;
output xored;

assign xored = a ^ b;
d d lendmodule

80

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog Code for half adderVerilog Code for half_adder

// Half Adder
module half_adder (a, b, sum, c_out);

input a, b; // declaring I/O ports
output sum, c_out;

assign sum = a ^ b;

sum

carry

a

b

g ;
assign c_out = a & b;

endmodule

Figure 1-1 Half adder circuit

81

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

endmodule

Full Adder circuitFull Adder circuit

a s1a
b sum

s2

c in

 c_outs3

_

82

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for full adderVerilog code for full_adder

// F ll Add// Full Adder
module full_adder (a, b, c_in, sum, c_out);

input a, b, c_in;
output sum, c_out;

wire s1, s2, s3;

assign s1 = a ^ b;
i 2 i & 1assign s2 = c_in & s1;

assign s3 = a & b;
assign sum = a ^ b;
assign c_out = s2 | s3;

d d lendmodule

// Using Signal Assignment Instructions

83

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Main Code for ALUMain Code for ALU

module alu (a b c in s0 s1 z c out);module alu (a, b, c_in, s0, s1, z, c_out);
input a, b, c_in, s0, s1;
output z, c_out;

reg z, c_out;

wire ored, xored, ha_sum, ha_c_out, fa_sum, fa_c_out;

t_or a1 (.a(a), .b(b), .ored(ored));
t_xor x1 (.a(a), .b(b), .xored(xored));
half_adder h1 (.a(a), .b(b), .sum(ha_sum),

(h)).c_out(ha_c_out));
full_adder f1 (.a(a), .b(b), .c_in(c_in), .sum(fa_sum),

.c_out(fa_c_out));

84

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Main Code for ALU Cont….

always @ (a or b or c_in or s0 or s1) begin

Main Code for ALU Cont….

y (_) g
if (s1 == 1’b0 && s0 == 1’b0) begin

z = ored;
c_out = 1’b0;

end
if (s1 == 1’b0 && s0 == 1’b1) beginif (s1 == 1 b0 && s0 == 1 b1) begin

z = xored;
c_out = 1’b0;

end
if (s1 == 1’b1 && s0 == 1’b0) begin

z = ha_sum;
c_out = ha_c_out;

end
if (s1 == 1’b1 && s0 = 1’b1) begin

z = fa sum;z fa_sum;
c_out = fa_c_out;

end
end

endmodule

85

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

CONTROL AND DATA PATH
ORGANIZATION

86

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control and Data Path OrganizationControl and Data Path Organization

 Most complex digital circuits can be
broken up into two parts:
 Control
 Data Path

87

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control and Data Path OrganizationControl and Data Path Organization

DATACONTROL
INPUTS

CONTROL
PROCESSING

DATA
PROCESSING

CONTROL

PROCESSING
BLOCK

PROCESSING
BLOCK

OBSERVATION

STATUS

88

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Finite State MachinesFinite State Machines

 Two Classes of Finite State Machines
(FSMs):
 Moore Machines
 Mealy Machinesy

89

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Moore Finite State Machines

 Outputs depend only on the state

Moore Finite State Machines

 State and Outputs Processing are
combinational elements

 State Vector is Sequential Elements
CLOCK

STATE OUTPUTSNEXT STATE OUTPUTSINPUTS
STATE

VECTOR
OUTPUTS

PROCESSING
NEXT STATE
PROCESSING

OUTPUTS

90

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Mealy Finite State Machines

 Outputs depend on the state and the
i t

Mealy Finite State Machines

inputs

CLOCK

STATE OUTPUTSNEXT STATE OUTPUTSINPUTS
STATE

VECTOR
OUTPUTS

PROCESSING
NEXT STATE
PROCESSING

OUTPUTS

91

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog IMPLEMENTATION
EXAMPLES – A Decimation Filter for

a Sigma-Delta Analog to Digital
Converter

92

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2-Ch Σ-Δ Analog to Digital Converter2 Ch Σ Δ Analog to Digital Converter

RSTN

Clock GenerationG3 
SYNC

G2
G1

CLK
PD1
PD2
PD3

RSTN

V1P

V1N x1, x2, x8, x16

PGA Integrators / Comparator

 Digital Filter
(Sinc3)

G0

CMP1

Digital Filter
(Sinc3)

Digital Design

V21P

V21N
PGA Integrators / Comparator

x1, x2, x8, x16



2nd Order  Modulators

CMP2

Bandgap
~ 1.25V

Analog Design

2 Order  Modulators

93

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

xx REF+ ADC

2nd Order Σ-Δ Modulator
(block/algorithmic)(block/algorithmic)

z-1
IN

OUT
1 / CFA CX / CFBCIN

CY / CFB
z-1

CREF

 This can be modeled in Behavioral Verilog

94

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2nd Order Σ-Δ Modulator
(circuit)(circuit)

VCMI

CFA CY

VCMI

CAZ

CIN CX CFBAZB

AZB

AZT1

T2

B1

B2

B2 S1

B1 S2

IN+

AMP1 AMP2

VCMI

CAZ

VCMI

CIN CX CFBAZBAZ

T2

T1

B2

B1 B2

B1 S2

S1

STRB

IN-

CFA CY

CREF B1

B2
REF+

FL

“1”

“0”

VCMI

CREF

B2

B1
REF-

FL

“0”

“1”

95

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 This can also be modeled in Behavioral Verilog

Decimation Digital FilterDecimation Digital Filter

z-1 z-1 z-1

IN

fs fs / OSR

OUT

z-1 z-1 z-1

fs / OSR

96

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Decimation Digital FilterDecimation Digital Filter

 Cubic sinc
 Bits of noise free accuracy for delta-Bits of noise free accuracy for delta

sigma ADC's:
 BITS = 3 * LOG(OSR) / LOG(2) + 2 BITS 3 LOG(OSR) / LOG(2) + 2
 Assume OSR=32, then BITS=17, and set

BITS=16

97

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Decimation Digital FilterDecimation Digital Filter

 First Filter Equations
 H1(z) = Y1(z)/X(z) = 1/(1 - 3 z-1 + 3 z-2 - z-3)
 y1(n) = x(n) + 3 y1(n-1) - 3 y1(n-2) + y1(n-3)

 Second Filter Equations
() ()/ () 1 2 3 H2(z) = Y(z)/X1(z) = 1 - 3 z-1 + 3 z-2 - z-3

 y(n) = x1(n) - 3 x1(n-1) + 3 x1(n-2) - x1(n-3)
Decimation (Retiming) Decimation (Retiming)
 x1(n)=y1(n/OSR)
 x (n)=y (n/32)

98

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 x1(n)=y1(n/32)

What do we need for our design?What do we need for our design?
 y1(n) = x(n) + 3 y1(n-1) - 3 y1(n-2) + y1(n-3)
 y(n) = x1(n) - 3 x1(n-1) + 3 x1(n-2) - x1(n-3)
 x1(n)=y1(n/32)

 Control
 On every x(n)

 S02: Store x(n) in accumulator, count x(n) mod 32
S03 A l 2 (1)

 Data Path
 16 bits
 Adder-Accumulator

 S03: Accumulate 2 y1(n-1)
 S04: Accumulate y1(n-1)
 S05: Accumulate 1’s complement of 2 y1(n-2)
 S06: Accumulate 1’s complement of y1(n-2)
 S07: Accumulate 2
 S08: Accumulate y1(n-3)

 1’s complement
 Shift left by one (x 2)
 Store y1(n-1), y1(n-2), y1(n-3)
 Store x1(n-1), x1(n-2), x1(n-3)

Constants: 2 & 3 S08: Accumulate y1(n 3)
 S09: Update y registers

 On every x1(n) (every 32nd y1(n))
 S10: Accumulate 1’s complement of 2 x1(n-1)
 S11: Accumulate 1’s complement of x1(n-1)
 S12: Accumulate 2 x1(n-2)

 Constants: 2 & 3

1()
 S13: Accumulate x1(n-2)
 S14: Accumulate 1’s complement of x1(n-3)
 S15: Accumulate 3, output result
 S16: Store y1(n-1) in accumulator
 S17: Update x registers

99

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Decimation Digital Filter ArchitectureDecimation Digital Filter Architecture

Ry1_n_1 Ry1_n_2 Ry1_n_3 Rx1_n_1 Rx1_n_2 Rx1_n_3

URy

S1 CONTROLLER
URx

x2, PASS

1’S COMP., PASS, 2, 3

S2

S3

S1

S2

S3

xn

S3

S4

URy
DATA-
PATH

ACCUMULATOR

xn
S4 URx

OSS

ISS

100

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

OUT
ISS

Verilog code for Data PathVerilog code for Data_Path

// h// Data_Path
module Data_Path (CLK, reset, xn, URy, URx,

S2 S3 S4 S1S2, S3, S4, S1,
OUTPUT);

input CLK, reset, xn, URy, URx, S2;
input [1:0] S3, S4;
input [2:0] S1;
output [15:0] OUTPUT;

101

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for Data Path
reg [15:0] Ry1_n_1, Ry1_n_2, Ry1_n_3;
reg [15:0] Rx1_n_1, Rx1_n_2, Rx1_n_3;

[15 0] ACCUMULATOR

Verilog code for Data_Path
3’b010 : T1 = Ry1_n_3;
3’b011 : T1 = Rx1_n_1;
3’b100 T1 R 1 2reg [15:0] ACCUMULATOR;

parameter my_zero = 16’b0000000000000000;

reg [15:0] T1, T2, T3, T4, T5;
reg my_msb;

3’b100 : T1 = Rx1_n_2;
3’b101 : T1 = Rx1_n_3;

endcase
case (S2)

1’b0 :
my_msb = T1[15];
T2 = T1 << 1;

assign OUTPUT = ACCUMULATOR;

always @ (posedge CLK or reset) begin
if (reset == 1’b1) begin

Ry1_n_1 = my_zero; Ry1_n_2 = my_zero; Ry1_n_3 = my_zero;
Rx1_n_1 = my_zero; Rx1_n_2 = my_zero; Rx1_n_3 = my_zero;

T2 = T1 << 1;
T3 = T2 & 16’b0111111111111111;
T4 = T3 | {my_msb, 15’b000000000000000};

1’b1 : T4 = T1;
endcase
case (S3)

2’b00 : T5 = ~T4;
ACCUMULATOR = my_zero;

else if (CLK == 1’b1) begin
if (URy == 1’b1) begin
Ry1_n_3 = Ry1_n_2; Ry1_n_2 = Ry1_n_1;
Ry1_n_1 = ACCUMULATOR;

end
if (URx == 1’b1) begin

2’b01 : T5 = T4;
2’b10 : T5 = 16’b0000000000000010;
2’b11 : T5 = 16’b0000000000000011;

endcase
case (S4)

2’b00 : ACCUMULATOR = {15’b000000000000000, xn};
2’b01 : ACCUMULATOR = Ry1 n 1;if (URx == 1 b1) begin

Rx1_n_3 = Rx1_n_2; Rx1_n_2 = Rx1_n_1;
Rx1_n_1 = ACCUMULATOR;

end
case (S1)

3’b000 : T1 = Ry1_n_1;
3’b001 : T1 = Ry1_n_2;

2 b01 : ACCUMULATOR = Ry1_n_1;
2’b10 : ACCUMULATOR = ACCUMULATOR + T5;

endcase
end

end
endmodule

102

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y _ _ ;

Verilog code for ControllerVerilog code for Controller

// Controller
module Controller (CLK, reset, ISS, URy, URx,

S2, OSS, S3, S4, S1);

input CLK, reset, ISS;
output URy, URx, S2, OSS;p y, , , ;
output [1:0] S3, S4;
output [2:0] S1;

103

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

output [2:0] S1;

Verilog code for Controller

parameter S00 = 5’h00, S01 = 5’h01, S02 = 5’h02, S03 = 5’h03,
S04 = 5’h04, S05 = 5’h05, S06 = 5’h06, S07 = 5’h07, S08 = 5’h08,

Verilog code for Controller

if (PRState == S03 || PRState == S05 ||S04 5 h04, S05 5 h05, S06 5 h06, S07 5 h07, S08 5 h08,
S09 = 5’h09, S10 = 5’h0A, S11 = 5’h0B, S12 = 5’h0C, S13 = 5’h0D,
S14 = 5’h0E, S15 = 5’h0F, S16 = 5’h10, S17 = 5’h11;

reg URy, URx, S2, OSS;
reg [1:0] S3, S4;
reg [2:0] S1;

PRState == S10 || PRState == S12) S2 = 1’b0;
else S2 = 1’b1;
if (PRState == S05 || PRState == S06 ||

PRState == S10 || PRState == S11 ||
PRState == S14) S3 = 2’b00;

else if (PRState S07) S3 2’b10;
reg [4:0] PRState, NXState;

reg [4:0] Counter;

always @ (PRState) begin
if (PRState == S09) URy = 1’b1;

else if (PRState == S07) S3 = 2’b10;
else if (PRState == S15) S3 = 2’b11;
else S3 = 2’b01;
if (PRState == S02) S4 = 2’b00;
else if (PRState == S16) S4 = 2’b01;
else S4 = 2’b10;if (PRState == S09) URy = 1 b1;

else URy = 1’b0;
if (PRState == S17) URx = 1’b1;
else URx = 1’b0;
if (PRState == S05 || PRState == S06) S1 = 3’b001;
else if (PRState == S08) S1 = 3’b010;
else if (PRState == S10 || PRState == S11) S1 = 3’b011;

else S4 2 b10;
if (PRState == S15) OSS = 1’b1;
else OSS = 1’b0;

end

else if (PRState == S12 || PRState == S13) S1 = 3’b100;
else if (PRState == S14) S1 = 3’b101;
else S1 = 3’b000;

104

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Verilog code for Controller
always @ (posedge CLK or reset) begin

if (reset == 1’b1) begin

Verilog code for Controller
S07 : NXState = S08;
S08 : NXState = S09;if (reset == 1 b1) begin

PRState = S00;
Counter = 5’b00000;

end
else begin

PRSt t NXSt t

S08 : NXState = S09;
S09 : if (Counter == 5’b00000) NXState = S10;

else NXState = S01;
S10 : NXState = S11;
S11 : NXState = S12;
S12 NXSt t S13PRState = NXState;

if (Counter == 5’b11111) Counter = 5’b00000;
else Counter = Counter + 5’b00001;

end
end

S12 : NXState = S13;
S13 : NXState = S14;
S14 : NXState = S15;
S15 : NXState = S16;
S16 : NXState = S17

always @ (PRState or ISS) begin
case (PRState)

S00 : if (ISS == 1’b1) NXState = S02;
S01 : if (ISS == 1’b1) NXState = S02;
S02 : NXState S03;

S17 : NXState = S01;
endcase

end
endmodule

S02 : NXState = S03;
S03 : NXState = S04;
S04 : NXState = S05;
S05 : NXState = S06;
S06 : NXState = S07;

105

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Main Code for FILTERMain Code for FILTER

module FILTER (reset, CLK, ISS, xn,
OSS, OUTPUT);,);

input reset CLK ISS xn;input reset, CLK, ISS, xn;
output OSS;
output [15:0] OUTPUT;

106

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Main Code for FILTER Cont…
wire URy, URx, S2;
wire [1:0] S3 S4;

Main Code for FILTER Cont…

wire [1:0] S3, S4;
wire [2:0] S1;

Controller c (CLK(CLK) reset(reset)Controller c (.CLK(CLK), .reset(reset),
.ISS(ISS), .URy(URy), .URx(URx), .S2(S2),
.OSS(OSS), .S3(S3), .S4(S4), .S1(S1));

Data_Path dp (.CLK(CLK), .reset(reset),_ p ((), (),
.xn(xn), .URy(URy), .URx(URx), .S2(S2),
.S3(S3), .S4(S4), .S1(S1), .OUTPUT(OUTPUT));

endmodule

107

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ConclusionsConclusions

108

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ConclusionsConclusions

109

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Thanks……Thanks……

h d @t j dhernande@tcnj.edu

http://www tcnj edu/~hernande/
110

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

http://www.tcnj.edu/ hernande/

