
Chapter 4p
Let’s build a processor!

1

IntroductionIntroduction

 CPU performance factors CPU performance factors
 Instruction count

 Determined by ISA and compiler
 CPI and Cycle time

 Determined by CPU hardware

 We will examine three MIPS implementations We will examine three MIPS implementations
 A simplified version (single cycle and multi-cycle)
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

A ith ti /l i l dd b d lt

2

 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

Instruction ExecutionInstruction Execution

 PC instruction memory fetch instruction PC instruction memory, fetch instruction
 Register numbers register file, read

registersregisters
 Depending on instruction class

 Use ALU to calculate Use ALU to calculate
 Arithmetic result
 Memory address for load/store

h dd Branch target address

 Access data memory for load/store
 PC target address or PC + 4

3

 PC target address or PC + 4

CPU OverviewCPU Overview

4

MultiplexersMultiplexers

 Can’t just join Can t just join
wires together
 Use multiplexersp

5

ControlControl

6

Logic Design BasicsLogic Design Basics

Information encoded in binary Information encoded in binary
 Low voltage = 0, High voltage = 1

O i bit One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements

7

(q)
 Store information

Combinational ElementsCombinational Elements
 AND-gate A

Y+
 Adder

 Y = A & B
A

Y

B
Y+

 Y = A + B

B
Y

Multiplexer
 Arithmetic/Logic Unit

 Multiplexer
 Y = S ? I1 : I0

A

 Y = F(A, B)

I0
I1

Y
M
u
x

B

YALU

8

S F

State Elements

Unclocked vs Clocked

S a e e e s

 Unclocked vs. Clocked
 Clocks used in synchronous logic

 when should an element that contains
state be updated?

falling edge

cycle time
i i d

9

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

rising edge

An unclocked state element

The set reset latch

 u c oc ed s a e e e e

 The set-reset latch
 output depends on present inputs and also

on past inputson past inputs

10

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Latches and Flip-flops

Output is equal to the stored value

a c es a d p ops

 Output is equal to the stored value
inside the element

(don't need to ask for permission to(don t need to ask for permission to
look at the value)
Ch f t t (l) i b d th Change of state (value) is based on the
clock

11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Latches and Flip-flops

Latches: whenever the inputs change

a c es a d p ops

 Latches: whenever the inputs change,
and the clock is asserted

"logically true"

 Flip-flop: state changes only on a clock

"logically true",
— could mean electrically low

edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

12

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

D-latch

Two inputs:

a c

 Two inputs:
 the data value to be stored (D)

th l k i l (C) i di ti h t d the clock signal (C) indicating when to read
& store D

T t t Two outputs:
 the value of the internal state (Q) and it's

l tcomplement
Q

C
D

C

13

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

D

_
Q

Q

D flip-flop p op

Output changes only on the clock edge Output changes only on the clock edge
QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

Q QCC

C

D

C

Q

14

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Sequential ElementsSequential Elements
 Register: stores data in a circuitg

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk changes
from 0 to 1

D Q Clk
D

Clk
D
Q

15

Sequential ElementsSequential Elements
 Register with write controlg

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

Clk

D Q Write

Clk

Clk
Write D

Q

16

Clocking MethodologyClocking Methodology
 Combinational logic transforms data during g g

clock cycles
 Between clock edges
 Input from state elements, output to state

element
L t d l d t i l k i d Longest delay determines clock period

17

Register File

Built using D flip flops

eg s e e

 Built using D flip-flops
Register 0
Register 1 M

u Read data 1

Read register
number 1

Read register
number 1 Read

M

Register n – 1
Register n

u
x

Read data 1

Read register
number 2

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

M
u
x

Read data 2

Do you understand? What is the “Mux” above?

18

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Do you understand? What is the Mux above?

AbstractionAbstraction

Make sure you understand the abstractions! Make sure you understand the abstractions!
 Sometimes it is easy to think you do, when

d ’t
Select

you don’t
Select

32A

M
u
x

B31

A31

C31

M
u
x

C
32

32

B

A

M
u
x

B30

A30

C30
...

...

M
u
x

B0

A0

C0

19

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Register Fileeg s e e

Note: we still use the real clock to Note: we still use the real clock to
determine when to write

n-to-1
decoder

Register 0

Register 1

C

C

D

Register number

Write

0
1

decoder Register 1

Register n – 1
C

D

D
n – 1

n

C

D

D
Register n

Register data

20

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Simple ImplementationS p e p e e a o

Include the functional units we need for Include the functional units we need for
each instruction

PC

Instruction
memory

Instruction
address

Instruction Add Sum

16 32
Sign

extend

MemWrite

Read
data

Address

a. Instruction memory b. Program counter c. Adder

ALU control

Read
data 1

Read
register 1

R i 5

5 3

extend

b. Sign-extension unit

MemRead

Data
memory

Write
data

a. Data memory unit

Why do we need this stuff?
RegWrite

Registers
Write
register

data 1

Read
data 2

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers Zero

5

5

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

RegWrite

a. Registers b. ALU

Building a DatapathBuilding a Datapath

Datapath Datapath
 Elements that process data and addresses

in the CPUin the CPU
 Registers, ALUs, mux’s, memories, …

We will build a MIPS datapath We will build a MIPS datapath
incrementally

R fi i th i d i Refining the overview design

22

Instruction FetchInstruction Fetch

32-bit
register

Increment by
4 for next
instruction

register

23

R Format InstructionsR-Format Instructions
 Read two register operandsg p
 Perform arithmetic/logical operation
 Write register result Write register result

24

Load/Store InstructionsLoad/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
d d d d Load: Read memory and update register

 Store: Write register value to memory

25

Branch InstructionsBranch Instructions

Read register operands Read register operands
 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement
 Shift left 2 places (word displacement)p (p)
 Add to PC + 4

 Already calculated by instruction fetch

26

Branch InstructionsBranch Instructions

Just
re-routes
wires

27

Sign-bit wire
replicated

Composing the ElementsComposing the Elements

First cut data path does an instruction First-cut data path does an instruction
in one clock cycle

E h d t p th element n onl do one Each datapath element can only do one
function at a time
Hence we need separate instruction and Hence, we need separate instruction and
data memories

Use multiplexers where alternate data Use multiplexers where alternate data
sources are used for different
instructions

28

instructions

R Type/Load/Store DatapathR-Type/Load/Store Datapath

29

Full DatapathFull Datapath

30

ControlCo o

Selecting the operations to perform Selecting the operations to perform
(ALU, read/write, etc.)

 Controlling the flow of data (multiplexer
inputs)inputs)

 Information comes from the 32 bits of
the instruction

31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ControlCo o

Example: Example:
add $8, $17, $18

 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

 ALU's operation based on instruction
type and function code

32

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

yp

Control

e g what should the ALU do with this

Co o

 e.g., what should the ALU do with this
instruction
Example: lw $1 100($2) Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit number

33

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ALU ControlALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtractBranch: F subtract
 R-type: F depends on funct field

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than

34

0111 set-on-less-than
1100 NOR

ALU ControlALU Control

Assume 2 bit ALUOp derived from Assume 2-bit ALUOp derived from
opcode

Combin tion l logi de i e ALU ont ol Combinational logic derives ALU control
opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010
sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010yp

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

35

OR 100101 OR 0001
set-on-less-than 101010 set-on-less-than 0111

The Main Control UnitThe Main Control Unit
 Control signals derived from instructiong

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6
R-type

35 or 43 rs rt address

31:26 25:21 20:16 15:0

Load/
Store

4 rs rt address

31:26 25:21 20:16 15:0
Branch

opcode always
read

read,
except
f l d

write for
R-type

d l d

sign-extend
and add

36

for load and load

ControlCo o

Add

RegDst

Add ALU
result

M
u
x

0

1

Shift
left 2

Instruction [25– 21]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

Control

Read
PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

0

0M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
Address

Instruction [5– 0]

16 32Instruction [15– 0] Sign
extend ALU

control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0

37

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

ControlCo o

 Simple combinational logic (truth
tables)

Op5

Inputs
Instruction

d
ALUOp0

ALUOp

ALU control block
Op0
Op1
Op2
Op3
Op4
Op5

Decoding

Operation2

Operation1
Operation

ALUOp1

F3

F2

F1
F (5– 0)

R-format Iw sw beq

Outputs

RegDst

ALUSrc

MemtoReg
Operation0

F1

F0

g

RegWrite

MemRead

MemWrite

Branch

ALUOp1

38

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ALUOpO

Our Simple Control Structure

All of the logic is combinational

Ou S p e Co o S uc u e

 All of the logic is combinational

 We wait for everything to settle down,
and the right thing to be done
 ALU might not produce “right answer” right ALU might not produce right answer right

away

i i l l i h l k we use write signals along with clock to
determine when to write

39

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Our Simple Control Structure

Cycle time determined by length of the

Ou S p e Co o S uc u e

 Cycle time determined by length of the
longest path

State
element

1
Combinational logic

State
element

2

Clock cycle

We are ignoring some details like setup and hold times

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Datapath With ControlDatapath With Control

41

R Type InstructionR-Type Instruction

42

Load InstructionLoad Instruction

43

Branch on Equal InstructionBranch-on-Equal Instruction

44

Implementing JumpsImplementing Jumps
2 addressJump

 Jump uses word address
31:26 25:0

Jump

 Update PC with concatenation of
 Top 4 bits of old PCp
 26-bit jump address
 00 00

 Need an extra control signal decoded from
opcode

45Chapter 4 — The Processor — 45

opcode

Datapath With Jumps AddedDatapath With Jumps Added

46

Performance IssuesPerformance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory register file ALU
 data memory register file

 Not feasible to vary period for different y p
instructions

 Violates design principle Violates design principle
 Making the common case fast

 We will improve performance by
47

 We will improve performance by
pipelining

Where we are headede e e a e eaded

Single Cycle Problems: Single Cycle Problems:
 what if we had a more complicated

instruction like floating point?instruction like floating point?
 requires more area

O S l ti One Solution:
 use a “smaller” cycle time
 have different instructions take different

numbers of cycles
“ l i l ” d h

48

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 a “multicycle” datapath:

Where we are headede e e a e eaded

 One Solution: One Solution:
 use a “smaller” cycle time
 have different instructions take different numbers have different instructions take different numbers

of cycles
 a “multicycle” datapath:

PC Address

Instruction
register Data

R i #
A

Memory Instruction
or data

Data

Registers
Register #

Register #

Register #

ALU

Memory
data

register
B

ALUOut

49

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Multicycle Approach

 We will be reusing functional units

u cyc e pp oac

 We will be reusing functional units
 ALU used to compute address and to increment

PC
 Memory used for instruction and data

 Our control signals will not be determined
soley by instruction
 e.g., what should the ALU do for a “subtract”

i t ti ?instruction?

 We’ll use a finite state machine for control

50

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Review: finite state
hi

 Finite state machines:
a set of states and

machines

 a set of states and
 next state function (determined by current state and the

input)
 output function (determined by current state and possibly

input)

Next-state Current state

Next
state

functionCurrent state

Clock

Output
function Outputs

Inputs

 We’ll use a Moore machine (output based only on current
state)

function p

51

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

state)

Review: finite state
himachines

 Example: Example:
B. 21 A friend would like you to build an “electronic eye” for use as
a fake security device. The device consists of three lights lined up in a
row controlled by the outputs Left Middle and Right which ifrow, controlled by the outputs Left, Middle, and Right, which, if
asserted, indicate that a light should be on. Only one light is on at a
time, and the light “moves” from left to right and then from right to
left, thus scaring away thieves who believe that the device is left, thus sca ing away thieves who believe that the device is
monitoring their activity. Draw the graphical representation for the
finite state machine used to specify the electronic eye. Note that the
rate of the eye’s movement will be controlled by the clock speed (which
should not be too great) and that there are essentially no inputs.

52

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Multicycle Approach

Break up the instructions into steps

u cyc e pp oac

 Break up the instructions into steps,
each step takes a cycle

balance the amo nt of o k to be done balance the amount of work to be done
 restrict each cycle to use only one major

functional unitfunctional unit

 At the end of a cycle
 store values for use in later cycles (easiest

thing to do)
i t d dditi l “i t l” i t

53

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 introduce additional “internal” registers

Multicycle Approach

At the end of a cycle

u cyc e pp oac

 At the end of a cycle
 store values for use in later cycles (easiest

thing to do)thing to do)
 introduce additional “internal” registers

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1
4

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

2

M
u
x

ALU
result

ALU
Zero

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Shift
left 2

M
u
x

0

1

Instruction
[15– 0]

Sign
extend

3216

x
3

Memory
data

register

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructions from ISA
perspectiveperspective

 Consider each instruction from perspective of p p
ISA.

 Example: Example:
 The add instruction changes a register.
 Register specified by bits 15:11 of instruction Register specified by bits 15:11 of instruction.
 Instruction specified by the PC.

New value is the sum (“op”) of two registers New value is the sum (op) of two registers.

55

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructions from ISA
perspectiveperspective

 Example: p
 Registers specified by bits 25:21 and 20:16 of

the instruction
Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op
R [M [PC][20 16]]Reg[Memory[PC][20:16]]

In order to accomplish this we must break up In order to accomplish this we must break up
the instruction.
(kind of like introducing variables when

56

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

(kind of like introducing variables when
programming)

Breaking down an
instructioninstruction

 ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <=
Reg[Memory[PC][25:21]] op

Reg[Memo [PC][20 16]]Reg[Memory[PC][20:16]]

57

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Breaking down an
instructioninstruction

 Could break down to:
 IR <= Memory[PC]
 A <= Reg[IR[25:21]]
 B <= Reg[IR[20:16]]
 ALUOut <= A op B
 Reg[IR[20:16]] <= ALUOut

 We forgot an important part of the
definition of arithmetic!

58

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 PC <= PC + 4

Idea behind multicycle
approachapproach

 We define each instruction from the ISA We define each instruction from the ISA
perspective (do this!)

 Break it down into steps following our rule
that data flows through at most one majorthat data flows through at most one major
functional unit (e.g., balance work across
steps)

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Idea behind multicycle
approachapproach

 Introduce new registers as needed (e g A Introduce new registers as needed (e.g, A,
B, ALUOut, MDR, etc.)

 Finally try and pack as much work into each
stepstep

(avoid unnecessary cycles)
while also trying to share steps where
possible

(minimizes control, helps to simplify
l ti)

60

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

solution)

Five Execution Steps

 Instruction Fetch

e ecu o S eps

 Instruction Fetch
 Instruction Decode and Register Fetch

Execution Memory Address Computation or Execution, Memory Address Computation, or
Branch Completion

 Memory Access or R-type instruction Memory Access or R-type instruction
completion

 Write-back step Write back step
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

61

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Step 1: Instruction Fetch

 Use PC to get instruction and put it in the

S ep : s uc o e c

g p
Instruction Register.

 Increment the PC by 4 and put the result back in
the PC.

 Can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC PC + 4;PC = PC + 4;

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?

62

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

What is the advantage of updating the PC now?

Step 2: Instruction Decode and Register Fetch

 Read registers rs and rt in case we need them
C t th b h dd i th i t ti i

S p g

 Compute the branch address in case the instruction is
a branch

 RTL: RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);ALUOut PC + (sign extend(IR[15 0]) << 2);

 We aren't setting any control lines based on the
instruction type

(b "d di " it i t l l i)(we are busy "decoding" it in our control logic)

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Step 3 (instruction dependent)

 ALU is performing one of three functions

p (p)

 ALU is performing one of three functions,
based on instruction type

 Memory Reference: Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

 R-type:yp
ALUOut = A op B;

 Branch:
if (A==B) PC = ALUOut;

64

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Step 4 (R-type or memory-
access)

Loads and stores access memory

access)

 Loads and stores access memory
MDR = Memory[ALUOut];

oror
Memory[ALUOut] = B;

R t i t ti fi i h R-type instructions finish
Reg[IR[15-11]] = ALUOut;

Th it t ll t k l t thThe write actually takes place at the
end of the cycle on the edge

65

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Write-back step

 Reg[IR[20-16]]= MDR;

e bac s ep

 Reg[IR[20-16]]= MDR;

Whi h i i d hi ?Which instruction needs this?
What about all the other instructions?

66

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Summary:y

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]g [[]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completionjump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDRy p

67

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Simple Questions
 How many cycles will it take to execute this code?

lw $t2 0($t3)

S p e Ques o s

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

 What is going on during the 8th cycle of execution?
 In what cycle does the actual addition of $t2 and
$t3 takes place?

68

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Implementing the Control

 Value of control signals is dependent upon:

p e e g e Co o

g p p
 what instruction is being executed
 which step is being performedp g p

 Use the information we’ve acculumated to
specify a finite state machinespecify a finite state machine
 specify the finite state machine graphically, or

use microprogramming use microprogramming

 Implementation can be derived from
specification

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

specification

Graphical Specification of FSM

 Note:

p p

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01

Instruction fetch
Instruction decode/

register fetch
0

1

Start

 don’t care if
not
mentioned
asserted if

ALUOp = 00ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Jump
completion

Branch
completionExecution

Memory address
computation

= 'LW') or (Op = 'SW') (Op = R-type)

(O
p

= '
BEQ')

(O
p

=
'J

')

 asserted if
name only

 otherwise
exact value

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

 (Op = LW

 (Op')
9862

 How many
t t bit ill

RegDst = 1
RegWriteMemWriteMemRead

Memory
access

Memory
access R-type completion

p = 'SW
')

(O
p

=
'L

W
'

753

state bits will
we need?

RegWrite
MemtoReg = 0IorD = 1IorD = 1

Write-back step
4

70

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

RegDst = 0
RegWrite

MemtoReg =1

Finite State Machine for
C t l

Implementation:

Control

 Implementation:
PCWrite

PCWriteCond
IorD
MemRead
MemWrite

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA

IRWrite

Outputs

Control logic

RegWrite
RegDst

NS3
NS2
NS1
NS0Inputs

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State registerInstruction register
opcode field

71

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

PLA Implementation p e e a o

 If I picked a horizontal
Op5

Op4

 If I picked a horizontal
or vertical line could
you explain it?

Op3

Op2

Op1

Op0you explain it?
S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoRegMemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
R W it

ALUSrcB1
ALUOp0

PCSource0

72

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

RegWrite
RegDst
NS3
NS2
NS1
NS0

ROM Implementation

ROM = "Read Only Memory"

O p e e a o

 ROM = Read Only Memory
 values of memory locations are fixed ahead

of timeof time

 A ROM can be used to implement a
truth tabletruth table
 if the address is m-bits, we can address 2m

entries in the ROMentries in the ROM.
 our outputs are the bits of data that the

address points to

73

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

address points to.

ROM Implementation
 A ROM can be used to implement a truth

t bl

O p e e a o

table
 if the address is m-bits, we can address 2m entries

in the ROMin the ROM.
 our outputs are the bits of data that the address

points to.

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 01 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

74

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

m is the "heigth", and n is the "width"

ROM Implementation

How many inputs are there?

O p e e a o

 How many inputs are there?
6 bits for opcode, 4 bits for state =

10 address lines10 address lines
(i.e., 210 = 1024 different

addresses)addresses)
 How many outputs are there?

16 d t th t l t t 4 t t16 datapath-control outputs, 4 state
bits = 20 outputs

75

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ROM Implementation

ROM is 210 x 20 = 20K bits (and a

O p e e a o

 ROM is 210 x 20 = 20K bits (and a
rather unusual size)

 Rather wasteful, since for lots of the
t i th t t thentries, the outputs are the same
— i.e., opcode is often ignored

76

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ROM vs PLA

Break up the table into two parts

O s

 Break up the table into two parts
— 4 state bits tell you the 16

outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state 0 b ts te you t e e t state

bits, 210 x 4 bits of ROM
Total: 4 3K bits of ROM— Total: 4.3K bits of ROM

77

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ROM vs PLA

PLA is much smaller

O s

 PLA is much smaller
— can share product terms
— only need entries that produce an

active outputact e output
— can take into account don't cares

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ROM vs PLA

Size is (#inputs #product terms) +

O s

 Size is (#inputs #product-terms) +
(#outputs #product-terms)

For this example =
(10x17)+(20x17) = 460 PLA cells(0) (0) 60 ce s

PLA ll ll b h i f PLA cells usually about the size of a
ROM cell (slightly bigger)

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Another Implementation Style

 Complex instructions: the "next state" is
ft t t t 1

p y

often current state + 1

PLA or ROM

Control unit PCWrite
PCWriteCond
IorD
MemRead
MemWrite

Outputs MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

IRWrite
BWrite

AddrCtl

State

Add

1

Input

RegWrite
RegDst

Address select logic

O
p[

5–
0]

Adder

80

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instruction register
opcode field

Details
Di t h ROM 1 Di t h ROM 2Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010

PLA or ROM

101011 sw 0010

State

Adder

1

Mux
3 2 1 0

AddrCtl

3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

Address select logic

State number Address-control action Value of AddrCtl
0 U i d 3

O
p

Address select logic

Instruction register
opcode field

0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0

81Spring Semester, 2004

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

Microprogrammingc op og a g
PCWrite
PCWriteCond
IorD

Control unit

MemtoReg
PCSource
ALUOp
ALUSrcB

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

Datapath

BWrite

ALUSrcB
ALUSrcA
RegWrite

AddrCtl
RegDst

Input

1

Microprogram counter

Address select logic

[5
–

0]

Adder

 What are the “microinstructions” ?

O
p[

Instruction register
opcode field

82

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 What are the microinstructions ?

Microprogramming

A specification methodology

c op og a g

 A specification methodology
 appropriate if hundreds of opcodes,

modes cycles etcmodes, cycles, etc.
 signals specified symbolically using

microinstructionsmicroinstructions

83

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Microprogrammingc op og a g

ALU Register PCWrite
Label control SRC1 SRC2 control Memory control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 R d ALU SLW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch

 Will two implementations of the same architecture

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

p f
have the same microcode?

 What would a microassembler do?

84

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to addAdd ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU inputB ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
W it ALU R W it W it i t i th d fi ld f th IR th i t b dWrite ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

R d PC M R d R d i th PC dd it lt i t IR (dRead PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

85Spring Semester, 2004

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

Maximally vs. Minimally
Encoded

No encoding:

Encoded

 No encoding:
 1 bit for each datapath operation
 faster, requires more memory (logic)
 used for Vax 780 — an astonishing 400K of

memory!

86

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Maximally vs. Minimally
Encoded

Lots of encoding:

Encoded

 Lots of encoding:
 send the microinstructions through logic to

t t l i lget control signals
 uses less memory, slower

87

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Maximally vs. Minimally
Encoded

Historical context of CISC:

Encoded

 Historical context of CISC:
 Too much logic to put on a single chip with

thi leverything else
 Use a ROM (or even RAM) to hold the

microcode
 It’s easy to add new instructions

88

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Microcode: Trade-offsc ocode: ade o s

 Distinction between specification and Distinction between specification and
implementation is sometimes blurred

 Specification Advantages:
 Easy to design and write

Design architecture and microcode in Design architecture and microcode in
parallel

89

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Microcode: Trade-offsc ocode: ade o s

Implementation (off chip ROM) Implementation (off-chip ROM)
Advantages
 Easy to change since values are in memory

 Can emulate other architectures Can emulate other architectures

 Can make use of internal registers

90

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Microcode: Trade-offsc ocode: ade o s

Implementation Disadvantages Implementation Disadvantages,
SLOWER now that:
 Control is implemented on same chip as

processorp

 ROM is no longer faster than RAM

No need to go back and make changes No need to go back and make changes

91

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Big Picturee g c u e

Initial
representation

Finite state
diagram Microprogram

Sequencing
control

Explicit next
state function

Microprogram counter
+ dispatch ROMS

Logic
representation

Logic
equations

Truth
tables

Implementation
technique

Programmable
logic array

Read only
memory

92

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Historical PerspectiveHistorical Perspective

 In the ‘60s and ‘70s microprogramming In the 60s and 70s microprogramming
was very important for implementing
machinesmachines

 This led to more sophisticated ISAs and
the VAXthe VAX

 In the ‘80s RISC processors based on
pipelining became popularpipelining became popular

 Pipelining the microinstructions is also
possible!

93

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

possible!

Historical PerspectiveHistorical Perspective

 Implementations of IA-32 architecture Implementations of IA-32 architecture
processors since 486 use:
 “hardwired control” for simpler instructions hardwired control for simpler instructions

(few cycles, FSM control implemented using PLA
or random logic)
“ d d l” f l “microcoded control” for more complex
instructions
(large numbers of cycles, central control store)(large numbers of cycles, central control store)

94

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Historical PerspectiveHistorical Perspective

 The IA-64 architecture uses a RISC- The IA-64 architecture uses a RISC-
style ISA and can be implemented
without a large central control storewithout a large central control store

95

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pentium 4Pentium 4
 Pipelining is important (last IA-32 without it was p g p (

80386 in 1985)
Control

Control

I/O
interface

Enhanced
floating point
and multimedia

interface

Instruction cache

Integer
d h

Data
cache

Chapter 5

C t l

Control

datapath Secondary
cache
and
memory
interface

Advanced pipelining

Chapter 4

ControlAdvanced pipelining
hyperthreading support

96

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pentium 4Pentium 4
 Pipelining is used for the simple instructions favored p g p

by compilers

“ l h h f l“Simply put, a high performance implementation
needs to ensure that the simple instructions execute
quickly and that the burden of the complexities ofquickly, and that the burden of the complexities of
the instruction set penalize the complex, less
frequently used, instructions”frequently used, instructions

97

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pentium 4Pentium 4
 Somewhere in all that “control” we must handle complex

instructions

Control

Control

Enhanced
fl ti i t

I/O
interface

Instruction cache

Data
cache

Control

floating point
and multimedia Integer

datapath Secondary
cache
and
memory
interface

ControlAdvanced pipelining
hyperthreading support

98

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pentium 4Pentium 4
 Processor executes simple microinstructions, 70 bits wide

(hardwired)
 120 control lines for integer datapath (400 for floating

point)point)
 If an instruction requires more than 4 microinstructions to

implement,
control from microcode ROM (8000 microinstructions)

 Its complicated!

99

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

SummarySummary

If we understand the instructions If we understand the instructions…
We can build a simple processor!

 If instructions take different amounts of
time multi cycle is bettertime, multi-cycle is better

 Datapath implemented using:g

 Combinational logic for arithmetic

State holding elements to emembe bits

100

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 State holding elements to remember bits

SummarySummary

Control implemented using: Control implemented using:

 Combinational logic for single-cycle
implementation

 Finite state machine for multi-cycle Finite state machine for multi cycle
implementation

101

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pipeliningpe g
 Improve performance by increasing

i t ti th h tinstruction throughput

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

2 4 6 8 10 12 14 16 18
Program
execution
order
(in instructions)

fetch access

8 ns
Instruction

fetch Reg ALU Data
access Reg

8 ns
Instruction

fetch

 8 ns

lw $2, 200($0)

lw $3, 300($0)

...

2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0) 2 ns
Instruction

f t h Reg ALU Data Reg

Program
execution
order
(in instructions)

Ideal speedup is number of stages in the pipeline.

$, 00($0)

lw $3, 300($0)

2 ns fetch g access g

2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

102

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Do we achieve this?

Pipelining AnalogyPipelining Analogy
 Pipelined laundry: overlapping executionp y pp g

 Parallelism improves performance

 Four loads:
 Speedupp p

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

103

 number of stages

Pipeliningpe g

 What makes it easyy
 all instructions are the same length
 just a few instruction formats
 memory operands appear only in loads and stores

 What makes it hard?
 structural hazards: suppose we had only one

memory
 control hazards: need to worry about branch control hazards: need to worry about branch

instructions
 data hazards: an instruction depends on a

104

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

previous instruction

Pipeliningpe g

We’ll build a simple pipeline and look at We ll build a simple pipeline and look at
these issues

 We’ll talk about modern processors and
h t ll k it h dwhat really makes it hard:

 exception handling
 trying to improve performance with out-of-

order execution, etc.

105

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Basic Ideaas c dea

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access WB: Write back

M
u
x

0

1

Add

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Instruction

Address

4

0

Add Add
result

Shift
left 2

Instruction

PC

M

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Read
dataAddress

Data

ALU
result

M
u

ALU
Zero

memory

32

0Write
data

u
x

16
Sign

extend

Write
data

Data
memory

1

u
x

 What do we need to add to actually split the
d h i ?

106

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

datapath into stages?

Pipelined Datapathpe ed a apa
M
u
x

0

1

4 Add Add
result

Shift
left 2

n

IF/ID EX/MEM MEM/WB

Add

Read

ID/EX

Instruction

memory

Address

32

0
In

st
ru

ct
ioPC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

Data

memory

Address

Can you find a problem even if there are no
dependencies?dependencies?
What instructions can we execute to
manifest the problem?

107

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

manifest the problem?

Corrected DatapathCo ec ed a apa

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

ID/EX

Instruction

memory

Address

4

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

PC

Address
M
u

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

W it

Read
data

Data

ALU
result

M
u

ALU
Zero

32

0Write
data

u
x

16
Sign

extend

Write
data

memory
1
x

108

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Graphically Representing
PipelinesPipelines

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Program
execution
order

IM Reg DM Reg

IM Reg DM Reg

lw $10, 20($1)

order
(in instructions)

sub $11 $2 $3

ALU

ALU

 Can help with answering questions like:

IM Reg DM Regsub $11, $2, $3 ALU

 how many cycles does it take to execute
this code?

h i h ALU d i d i l 4? what is the ALU doing during cycle 4?
 use this representation to help understand

d t th

109

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

datapaths

Pipeline Controlpe e Co o

PCSrc

IF/ID ID/EX EX/MEM MEM/WB

0

1

M
u
x

PC Address

ru
ct

io
n

Branch

ALUS

4

Read
data 1

Read
register 1

R d

RegWrite

MemWrite

Add Add
result

Shift
left 2

Add

Instruction
memory

In
st

r

MemtoRegALUSrc

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

data 1

Read
data 2

Read
register 2

Sign

M
u
x

1
Write

data

Read

data M
u
x

1

ALU
6

Address

Data
memory

Zero
ALU

result
ALU

Zero

Instruction
[20– 16]

ALUOp

RegDst

Sign
extend

ALU
control MemRead

Instruction
[15– 11]

0

1

M
u
x

110

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pipeline control

We have 5 stages What needs to be

pe e co o

 We have 5 stages. What needs to be
controlled in each stage?

Inst ction Fetch and PC Inc ement Instruction Fetch and PC Increment
 Instruction Decode / Register Fetch

E ti Execution
 Memory Stage
 Write Back

111

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pipeline control

How would control be handled in an

pe e co o

 How would control be handled in an
automobile plant?

a fanc cont ol cente telling e e one a fancy control center telling everyone
what to do?
should we use a finite state machine? should we use a finite state machine?

112

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pipeline Control
 Pass control signals along just like the data

pe e Co o

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Reg ALU ALU ALU Mem Mem Reg Mem to
Instruction Dst Op1 Op0 Src Branch Read Write write Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control M

WB

WBInstruction

EX M WB

113

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

IF/ID ID/EX EX/MEM MEM/WB

Datapath with Controla apa Co o
PCSrc

Control

EX

M

WB

M

WB

WBIF/ID

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC

ru
ct

io
n

Add

m
to

R
eg

Branch

ALUSrc

4 Add Add
result

Read
data 1

Read
register 1

R d

Shift
left 2

R
eg

W
rit

e

M
em

W
rit

e

Address

Instruction
memory

In
st

r

M
em

16 32Instruction
[15 0]

0

0
Registers

Write
register

Write
data

data 1

Read
data 2

Read
register 2

Si

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU

ALU

6

Address
Data

memory

Instruction
[20– 16]

ALUOp

RegDst

[15– 0]

M
u
x

0

1

Sign
extend

ALU
control

MemRead

Instruction
[15– 11]

114

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Dependencies
 Problem with starting next instruction before first is

finished

epe de c es

finished
 dependencies that “go backward in time” are data hazards

Time (in clock cycles)

IM R

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

(y)

b $2 $1 $3

Program
execution
order
(in instructions)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20
Value of
register $2:

DM RegIM Reg

IM Reg

sub $2, $1, $3

and $12, $2, $5

DM Reg

Reg DM

IM Reg DM Reg

IM DM Reg

or $13, $6, $2

add $14, $2, $2 Reg

115

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

IM DM Regsw $15, 100($2) Reg

Software Solution
 Have compiler guarantee no hazards

So a e So u o

 Where do we insert the “nops” ?

b $2 $1 $3sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Problem: this really slows us down!

116

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS PipelineMIPS Pipeline

Five stages one step per stage Five stages, one step per stage
1. IF: Instruction fetch from memory
2 ID I t ti d d & i t d2. ID: Instruction decode & register read
3. EX: Execute operation or calculate

addressaddress
4. MEM: Access memory operand
5 WB W it lt b k t i t5. WB: Write result back to register

117

Pipeline PerformancePipeline Performance
 Assume time for stages isg

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

118

beq 200ps 100 ps 200ps 500ps

Pipeline PerformancePipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

119

Pipeline SpeedupPipeline Speedup

If all stages are balanced If all stages are balanced
 i.e., all take the same time
Ti b t i t tiTime between instructionspipelined

= Time between instructionsnonpipelined

Number of stagesNumber of stages

 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does

120

y ()
not decrease

Pipelining and ISA DesignPipelining and ISA Design

 MIPS ISA designed for pipelining MIPS ISA designed for pipelining
 All instructions are 32-bits

 Easier to fetch and decode in one cycle Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
C l l dd i 3 d

 Can calculate address in 3rd stage, access
memory in 4th stage

 Alignment of memory operands

121

 Alignment of memory operands
 Memory access takes only one cycle

HazardsHazards

 Situations that prevent starting the next Situations that prevent starting the next
instruction in the next cycle

 Structure hazards Structure hazards
 A required resource is busy

 Data hazard Data hazard
 Need to wait for previous instruction to

complete its data read/writecomplete its data read/write
 Control hazard

 Deciding on control action depends on

122

 Deciding on control action depends on
previous instruction

Structure HazardsStructure Hazards

Conflict for use of a resource Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for

h lthat cycle
 Would cause a pipeline “bubble”

H i li d d h i Hence, pipelined datapaths require
separate instruction/data memories

123

 Or separate instruction/data caches

Data HazardsData Hazards
 An instruction depends on completion of p p

data access by a previous instruction
add $s0, $t0, $t1, ,
sub $t2, $s0, $t3

124

Forwarding (aka Bypassing)Forwarding (aka Bypassing)
 Use result when it is computedp

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapathqu a o o da apa

125

Load Use Data HazardLoad-Use Data Hazard
 Can’t always avoid stalls by forwardingy y g

 If value not computed when needed
 Can’t forward backward in time! Can t forward backward in time!

126

Forwarding

 Use temporary results, don’t wait for them to be written

o a d g

 register file forwarding to handle read/write to same register
 ALU forwarding

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20Value of register $2 :

IM Regsub $2, $1, $3

Program
execution order
(in instructions)

DM Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

IM Regand $12, $2, $5

IM Reg DM Regor $13, $6, $2

Reg DM

IM Reg DM Reg

IM DM Reg

IM DM R

or $13, $6, $2

add $14, $2, $2

$15 100($2) R

Reg

127

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

what if this $2 was $13?

IM DM Regsw $15, 100($2) Reg

Forwardingo a d g

ID/EX

Control

EX

M

WB

M

WB

WB

EX/MEM

MEM/WB

IF/ID

PC Instruction
memory

Registers

M
u
x

M
u
x

ALU Data
memory

M
u
x

In
st

ru
ct

io
n

RIF/ID R i t R

Forwarding
unit

M
u
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

128

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Can't always forward
 Load word can still cause a hazard:

an instruction tries to read a register following a load instruction that writes to

Ca a ays o a d

 an instruction tries to read a register following a load instruction that writes to
the same register

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)
Program
execution

CC 7 CC 8 CC 9

Reg

IM Reg

IM

lw $2, 20($1)

execution
order
(in instructions)

and $4, $2, $5

DM Reg

Reg DM g

IM Reg DM Reg

IM DM Reg

or $8, $2, $6

add $9 $4 $2

g

Reg

Reg

IM DM Reg

IM DM Reg

add $9, $4, $2

slt $1, $6, $7

Reg

129

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Thus, we need a hazard detection unit to “stall” the load instruction

StallingS a g

We can stall the pipeline by keeping an We can stall the pipeline by keeping an
instruction in the same stage

lw $2, 20($1)

Program
execution
order
(in instructions)

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

CC 7 CC 8 CC 9 CC 10

DM Reg

and $4, $2, $5

or $8, $2, $6

RegIM DM

IM Reg DM RegIM

RegReg

bubble

add $9, $4, $2

slt $1, $6, $7 Reg

IM DM Reg

IM DM Reg

Reg

bubble

130

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Hazard Detection Unita a d e ec o U

 Stall by letting an instruction that won’t y g
write anything go forward

ID/EX

Hazard
detection

unit

ID/EX.MemRead

Control

EX

M

WB

M

WB

WB

EX/MEM

MEM/WB
0

M
u
x

IF/ID

IF
/ID

W
rit

e

te

PC Instruction
memory

Registers

M
u
x

M
u
x

ALU Data
memory

M
u
x

In
st

ru
ct

io
n

P
C

W
ri

M
u
x

Forwarding
unit

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

131

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Code Scheduling to
Avoid StallsAvoid Stalls

 Reorder code to avoid use of load result in
the next instruction
C code for A = B + E; C = B + F;C code o ; C ;

lw $t1, 0($t0) lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)
stall

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5 16($t0)
stall

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5 16($t0)

132

sw $t5, 16($t0) sw $t5, 16($t0)

11 cycles13 cycles

Control HazardsControl Hazards

 Branch determines flow of control Branch determines flow of control
 Fetching next instruction depends on

branch outcomebranch outcome
 Pipeline can’t always fetch correct

instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
Add hardware to do it in ID stage

133

 Add hardware to do it in ID stage

Stall on BranchStall on Branch
 Wait until branch outcome determined

before fetching next instruction

134

Flushing Instructionsus g s uc o s

IF.Flush

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Hazard
detection

unit

Control

M
u
x

M
u
x

Instruction

4

Registers
ALU

EX M WB

Data

M
u
x

IF/ID

=

Shift
left 2

PC Instruction
memory

M
u
x

M
u
x

ALU Data
memory

Sign
extend

M
u
x

Forwarding
unit

135

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch PredictionBranch Prediction

Longer pipelines can’t readily determine Longer pipelines can t readily determine
branch outcome early

St ll pen lt be ome n ept ble Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no

136

,
delay

MIPS with Predict Not TakenMIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

137

More-Realistic Branch
PredictionPrediction

 Static branch prediction Static branch prediction
 Based on typical branch behavior
 Example: loop and if-statement branches Example: loop and if statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

e g record recent history of each branch e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

138

g g p y

Branch PredictionBranch Prediction

 Sophisticated Techniques: Sophisticated Techniques:
 A “branch target buffer” to help us look up the

destinationdestination

 Correlating predictors that base prediction on
l b l b h iglobal behavior

and recently executed branches (e.g., prediction
f ififor a specific
branch instruction based on what happened in previous
branches)

139

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

branches)

Branch PredictionBranch Prediction

 Sophisticated Techniques: Sophisticated Techniques:
 Tournament predictors that use different types

of prediction strategies and keep track of whichof prediction strategies and keep track of which
one is performing best.

A “b h d l l t” hi h th il t i t A “branch delay slot” which the compiler tries to
fill with a useful instruction (make the one cycle
d l t f th ISA)delay part of the ISA)

140

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch PredictionBranch Prediction

 Branch prediction is especially important Branch prediction is especially important
because it enables other more advanced
pipelining techniques to be effective!pipelining techniques to be effective!

 Modern processors predict correctly 95% of
the time!

141

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Improving Performancep o g e o a ce

Try and avoid stalls! E g reorder these Try and avoid stalls! E.g., reorder these
instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

142

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Improving Performancep o g e o a ce

 Dynamic Pipeline Schedulingy p g
 Hardware chooses which instructions to execute

next
 Will execute instructions out of order (e.g.,

doesn’t wait for a dependency to be resolved,
but rather keeps going!)

 Speculates on branches and keeps the pipeline
f llfull
(may need to rollback if prediction incorrect)

T i t l it i t ti l l ll li
143

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Trying to exploit instruction-level parallelism

Improving Performancep o g e o a ce

Add a “branch delay slot” Add a branch delay slot
 the next instruction after a branch is

always executedalways executed
 rely on compiler to “fill” the slot with

something usefulsomething useful

 Superscalar: start more than one Superscalar: start more than one
instruction in the same cycle

144

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Dynamic Schedulingy a c Sc edu g

The hardware performs the The hardware performs the
“scheduling”
 hardware tries to find instructions to

execute
 out of order execution is possible
 speculative execution and dynamic branch

prediction

145

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Pipeline SummaryPipeline Summary

The BIG Picture

 Pipelining improves performance by
i i i t ti th h t

The BIG Picture

increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of

146

Instruction set design affects complexity of
pipeline implementation

MIPS Pipelined DatapathMIPS Pipelined Datapath

MEM

WBRight-to-left
flow leads to

147

hazards

Pipeline registersPipeline registers
 Need registers between stagesg g

 To hold information produced in previous cycle

148

Pipeline OperationPipeline Operation

Cycle by cycle flow of instructions Cycle-by-cycle flow of instructions
through the pipelined datapath

“Single lo k le” pipeline di g m “Single-clock-cycle” pipeline diagram
 Shows pipeline usage in a single cycle

Highlight resources used Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time Graph of operation over time

 We’ll look at “single-clock-cycle”
diagrams for load & store

149

diagrams for load & store

IF for Load Store IF for Load, Store, …

150

ID for Load Store ID for Load, Store, …

151

EX for LoadEX for Load

152

MEM for LoadMEM for Load

153

WB for LoadWB for Load

Wrong
register
number

154

number

Corrected Datapath for
LoadLoad

155

EX for StoreEX for Store

156

MEM for StoreMEM for Store

157

WB for StoreWB for Store

158

Multi-Cycle Pipeline
DiagramDiagram

 Form showing resource usage

159

Multi-Cycle Pipeline
DiagramDiagram

 Traditional form

160

Single-Cycle Pipeline
DiagramDiagram

 State of pipeline in a given cyclep p g y

161

Pipelined Control
(Simplified)(Simplified)

162

Pipelined ControlPipelined Control
 Control signals derived from instructiong

 As in single-cycle implementation

163

Pipelined ControlPipelined Control

164

Data Hazards in ALU Instructionsa a a a ds U s uc o s

Consider this sequence: Consider this sequence:
sub $2, $1,$3
and $12 $2 $5and $12,$2,$5
or $13,$6,$2
add $14,$2,2 ,$,$
sw $15,100($2)

 We can resolve hazards with forwarding We can resolve hazards with forwarding
 How do we detect when to forward?

165

Dependencies & ForwardingDependencies & Forwarding

166

Detecting the Need to
ForwardForward

 Pass register numbers along pipelineg g
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
ALU operand register numbers in EX stage ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt/ g , / g

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

Fwd from
EX/MEM
pipeline reg

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b MEM/WB RegisterRd = ID/EX RegisterRt

pipeline reg

Fwd from
MEM/WB
pipeline reg

167

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt pipeline reg

Detecting the Need to
ForwardForward

But only if forwarding instruction will But only if forwarding instruction will
write to a register!

EX/MEM RegW ite MEM/WB RegW ite EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not
$$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB R i Rd 0MEM/WB.RegisterRd ≠ 0

168

Forwarding PathsForwarding Paths

169

Forwarding ConditionsForwarding Conditions

 EX hazard EX hazard
 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

170

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Double Data HazardDouble Data Hazard

Consider the sequence: Consider the sequence:
add $1,$1,$2
add $1 $1 $3add $1,$1,$3
add $1,$1,$4

Both hazards occur Both hazards occur
 Want to use the most recent

R i MEM h d diti Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true

171

Revised Forwarding ConditionRevised Forwarding Condition

 MEM hazard MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01ForwardA 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

172

Datapath with ForwardingDatapath with Forwarding

173

Load Use Data HazardLoad-Use Data Hazard

Need to stallNeed to stall
for one cycle

174

Load Use Hazard DetectionLoad-Use Hazard Detection

 Check when using instruction is Check when using instruction is
decoded in ID stage

 ALU operand register numbers in ID ALU operand register numbers in ID
stage are given by
 IF/ID RegisterRs IF/ID RegisterRt IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX MemRead and ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

175

 If detected, stall and insert bubble

How to Stall the PipelineHow to Stall the Pipeline

Force control values in ID/EX register Force control values in ID/EX register
to 0

EX MEM and WB do nop (no operation) EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for
lw

176

 Can subsequently forward to EX stage

Stall/Bubble in the PipelineStall/Bubble in the Pipeline

Stall inserted
here

177

Stall/Bubble in the PipelineStall/Bubble in the Pipeline

178

Or, more
accurately…

Datapath with Hazard
DetectionDetection

179

Stalls and PerformanceStalls and Performance

The BIG Picture

 Stalls reduce performance

The BIG Picture

 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls
 Requires knowledge of the pipeline structure

180

Branch HazardsBranch Hazards
 If branch outcome determined in MEM

Flush these
instructionsinstructions
(Set control
values to 0)

181
PC

Reducing Branch DelayReducing Branch Delay

 Move hardware to determine outcome to ID Move hardware to determine outcome to ID
stage
 Target address adder Target address adder
 Register comparator

 Example: branch takenp
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5, ,
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

182

...
72: lw $4, 50($7)

Example: Branch TakenExample: Branch Taken

183

Example: Branch TakenExample: Branch Taken

184

Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of p g

2nd or 3rd preceding ALU instruction

IF ID EX MEM WB

IF ID EX MEM WBadd $4, $5, $6

add $1, $2, $3

… IF ID EX MEM WB

add $4, $5, $6

IF ID EX MEM WBbeq $1, $4, target

 Can resolve using forwarding

185

 Can resolve using forwarding

Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding
load instruction
 Need 1 stall cycle

IF ID EX MEM WB

IF ID EX MEM WBadd $4, $5, $6

lw $1, addr

beq stalled IF ID

ID EX MEM WBb $1 $4 t t

186

ID EX MEM WBbeq $1, $4, target

Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of

immediately preceding load instruction
 Need 2 stall cyclesy

IF ID EX MEM WB

IF IDbeq stalled

lw $1, addr

beq stalled ID

ID EX MEM WB

q

b $1 $0 t t

187

ID EX MEM WBbeq $1, $0, target

Dynamic Branch PredictionDynamic Branch Prediction

 In deeper and superscalar pipelines branch In deeper and superscalar pipelines, branch
penalty is more significant

 Use dynamic prediction Use dynamic prediction
 Branch prediction buffer (aka branch history table)
 Indexed by recent branch instruction addressesy
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

188

 If wrong, flush pipeline and flip prediction

1 Bit Predictor: Shortcoming1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!p p

outer: …
…

iinner: …

…

beq …, …, inner
…
beq …, …, outer

Mispredict as taken on last iteration of Mispredict as taken on last iteration of
inner loop
Then mispredict as not taken on first

189

 Then mispredict as not taken on first
iteration of inner loop next time around

2 Bit Predictor2-Bit Predictor

Only change prediction on two Only change prediction on two
successive mispredictions

190

Calculating the Branch
TargetTarget

Even with predictor still need to Even with predictor, still need to
calculate the target address

1 le pen lt fo t ken b n h 1-cycle penalty for a taken branch

 Branch target buffer
 Cache of target addresses
 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken,
can fetch target immediately

191

Exceptions and InterruptsExceptions and Interrupts

 “Unexpected” events requiring change Unexpected events requiring change
in flow of control
 Different ISAs use the terms differently Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing

192

performance is hard

Handling ExceptionsHandling Exceptions

 In MIPS exceptions managed by a System In MIPS, exceptions managed by a System
Control Coprocessor (CP0)

 Save PC of offending (or interrupted) g (p)
instruction
 In MIPS: Exception Program Counter (EPC)

S i di ti f th bl Save indication of the problem
 In MIPS: Cause register
 We’ll assume 1-bit We ll assume 1 bit

 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180

193

An Alternate MechanismAn Alternate Mechanism

 Vectored Interrupts Vectored Interrupts
 Handler address determined by the cause

 Example: Example:
 Undefined opcode: C000 0000
 Overflow: C000 0020 Overflow: C000 0020
 …: C000 0040

 Instructions either Instructions either
 Deal with the interrupt, or
 Jump to real handler (ISR)

194

 Jump to real handler (ISR)

Handler ActionsHandler Actions

 Read cause and transfer to relevant Read cause, and transfer to relevant
handler

 Determine action required Determine action required
 If restartable

Take corrective action Take corrective action
 use EPC to return to program
Otherwise Otherwise
 Terminate program

Report error using EPC cause

195

 Report error using EPC, cause, …

Exceptions in a PipelineExceptions in a Pipeline

 Another form of control hazard Another form of control hazard
 Consider overflow on add in EX stage

add $1 $2 $1add $1, $2, $1

 Prevent $1 from being clobbered
 Complete previous instructions Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values Set Cause and EPC register values
 Transfer control to handler

 Similar to mispredicted branch

196

 Similar to mispredicted branch
 Use much of the same hardware

Pipeline with ExceptionsPipeline with Exceptions

197

Exception PropertiesException Properties

Restartable exceptions Restartable exceptions
 Pipeline can flush the instruction

H dl t th t t th Handler executes, then returns to the
instruction

Refetched and executed from scratch Refetched and executed from scratch

 PC saved in EPC register
Id tifi i i t ti Identifies causing instruction

 Actually PC + 4 is saved
H dl t dj t

198

 Handler must adjust

Exception ExampleException Example

 Exception on add in Exception on add in
40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13 $2 $648 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16 50($7)54 lw $16, 50($7)
…

 Handler
80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)

199

…

Exception ExampleException Example

200

Exception ExampleException Example

201

Multiple ExceptionsMultiple Exceptions

 Pipelining overlaps multiple instructions Pipelining overlaps multiple instructions
 Could have multiple exceptions at once

 Simple approach: deal with exception from Simple approach: deal with exception from
earliest instruction
 Flush subsequent instructionsq
 “Precise” exceptions

 In complex pipelinesp p p
 Multiple instructions issued per cycle
 Out-of-order completion

202

 Maintaining precise exceptions is difficult!

Imprecise ExceptionsImprecise Exceptions

 Just stop pipeline and save state Just stop pipeline and save state
 Including exception cause(s)

 Let the handler work out Let the handler work out
 Which instruction(s) had exceptions
 Which to complete or flushc to co p ete o us

 May require “manual” completion

 Simplifies hardware, but more complex
handler software

 Not feasible for complex multiple-issue

203

out-of-order pipelines

Instr ction Le el Parallelism (ILP)Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage shorter clock cycle
Multiple issue Multiple issue
 Replicate pipeline stages multiple pipelines
 Start multiple instructions per clock cycle

CPI 1 I t ti P C l (IPC) CPI < 1, so use Instructions Per Cycle (IPC)
 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4
B t d d i d thi i ti

204

 But dependencies reduce this in practice

Multiple IssueMultiple Issue

 Static multiple issue Static multiple issue
 Compiler groups instructions to be issued together
 Packages them into “issue slots” Packages them into issue slots
 Compiler detects and avoids hazards

 Dynamic multiple issuey p
 CPU examines instruction stream and chooses

instructions to issue each cycle
 Compiler can help by reordering instructions
 CPU resolves hazards using advanced techniques

at runtime

205

at runtime

SpeculationSpeculation

 “Guess” what to do with an instruction Guess what to do with an instruction
 Start operation as soon as possible
 Check whether guess was right Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue
 Examples

 Speculate on branch outcome
 Roll back if path taken is different

 Speculate on load

206

 Speculate on load
 Roll back if location is updated

Compiler/Hardware
SpeculationSpeculation

Compiler can reorder instructions Compiler can reorder instructions
 e.g., move load before branch

C i l d “fi ” i t ti t Can include “fix-up” instructions to recover
from incorrect guess

H d l k h d f Hardware can look ahead for
instructions to execute
 Buffer results until it determines they are

actually needed
Fl h b ff i t l ti

207

 Flush buffers on incorrect speculation

Speculation and ExceptionsSpeculation and Exceptions

 What if exception occurs on a What if exception occurs on a
speculatively executed instruction?
 e g speculative load before null-pointer e.g., speculative load before null pointer

check
 Static speculationp

 Can add ISA support for deferring
exceptions

 Dynamic speculation
 Can buffer exceptions until instruction

208

completion (which may not occur)

Static Multiple IssueStatic Multiple Issue

Compiler groups instructions into “issue Compiler groups instructions into issue
packets”

G o p of in t tion th t n be i ed on Group of instructions that can be issued on
a single cycle
Determined by pipeline resources required Determined by pipeline resources required

 Think of an issue packet as a very long
i t tiinstruction
 Specifies multiple concurrent operations

209

 Very Long Instruction Word (VLIW)

Scheduling Static Multiple IssueScheduling Static Multiple Issue

Compiler must remove some/all hazards Compiler must remove some/all hazards
 Reorder instructions into issue packets

N d d i ith k t No dependencies with a packet
 Possibly some dependencies between

packetspackets
 Varies between ISAs; compiler must know!

Pad with nop if necessary Pad with nop if necessary

210

MIPS with Static Dual IssueMIPS with Static Dual Issue
 Two-issue packets

 One ALU/branch instruction
 One load/store instruction
 64-bit aligned

 ALU/branch, then load/store
 Pad an unused instruction with nop Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

211

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

MIPS with Static Dual IssueMIPS with Static Dual Issue

212

Hazards in the Dual Issue MIPSHazards in the Dual-Issue MIPS
 More instructions executing in parallel
 EX data hazard

 Forwarding avoided stalls with single-issue
 Now can’t use ALU result in load/store in same

packet
 add $t0, $s0, $s1, ,
load $s2, 0($t0)

 Split into two packets, effectively a stall

Load use hazard Load-use hazard
 Still one cycle use latency, but now two

instructions

213

instructions

 More aggressive scheduling required

Scheduling ExampleScheduling Example
 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2, ,
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

ddi $ 1 $ 1 4 2addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

214

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Loop UnrollingLoop Unrolling

Replicate loop body to expose more Replicate loop body to expose more
parallelism

Red e loop ont ol o e he d Reduces loop-control overhead

 Use different registers per replication
 Called “register renaming”
 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register
 Aka “name dependence”

Reuse of a register name

215

 Reuse of a register name

Loop Unrolling ExampleLoop Unrolling Example
ALU/branch Load/store cycley

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3 $t4 $s2 sw $t1 12($s1) 6addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

 IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size

216

Dynamic Multiple IssueDynamic Multiple Issue

“Superscalar” processors Superscalar processors
 CPU decides whether to issue 0, 1, 2, …

h leach cycle
 Avoiding structural and data hazards

 Avoids the need for compiler scheduling
 Though it may still help
 Code semantics ensured by the CPU

217

Dynamic Pipeline
SchedulingScheduling

Allow the CPU to execute instructions Allow the CPU to execute instructions
out of order to avoid stalls

B t ommit e lt to egi te in o de But commit result to registers in order

 Example
lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4 $s4 $t3sub $s4, $s4, $t3
slti $t5, $s4, 20

Can start sub while addu is waiting for lw

218

 Can start sub while addu is waiting for lw

Dynamically Scheduled CPUDynamically Scheduled CPU
Preserves
dependenciesdependencies

Hold pending
operands

Results also sent to
any waiting
reservation stations

Reorders buffer for
i t it

219

register writes
Can supply
operands for
issued instructions

Register RenamingRegister Renaming
 Reservation stations and reorder buffer

effectively provide register renaming
 On instruction issue to reservation station

If d i il bl i i t fil d If operand is available in register file or reorder
buffer
 Copied to reservation station
 No longer required in the register; can be overwritten

 If operand is not yet available
 It will be provided to the reservation station by a t be p o ded to t e ese at o stat o by a

function unit
 Register update may not be required

220

SpeculationSpeculation

Predict branch and continue issuing Predict branch and continue issuing
 Don’t commit until branch outcome

determineddetermined

 Load speculation
A id l d d h i d l Avoid load and cache miss delay
 Predict the effective address

Predict loaded value Predict loaded value
 Load before completing outstanding stores
 Bypass stored values to load unit

221

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Why Do Dynamic
Scheduling?Scheduling?

Why not just let the compiler schedule Why not just let the compiler schedule
code?
N t ll t ll di bl Not all stalls are predicable
 e.g., cache misses

 Can’t always schedule around branches
 Branch outcome is dynamically determined

 Different implementations of an ISA
have different latencies and hazards

222

have different latencies and hazards

Does Multiple Issue Work?Does Multiple Issue Work?

The BIG Picture

 Yes, but not as much as we’d like
P h l d d i th t li it ILP

The BIG Picture

 Programs have real dependencies that limit ILP
 Some dependencies are hard to eliminate

i t li i e.g., pointer aliasing

 Some parallelism is hard to expose
Limited window size during instruction issue Limited window size during instruction issue

 Memory delays and limited bandwidth
Hard to keep pipelines full

223

 Hard to keep pipelines full

 Speculation can help if done well

Power EfficiencyPower Efficiency
 Complexity of dynamic scheduling and p y y g

speculations requires power
 Multiple simpler cores may be better Multiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline

Stages
Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MH 5 1 N 1 5Wi486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Will tt 2001 2000MH 22 3 Y 1 75WP4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Ult S III 2003 1950MH 14 4 N 1 90W

224

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

The Opteron X4 MicroarchitectureThe Opteron X4 Microarchitecture

72 physical
registers

225

The Opteron X4 Pipeline FlowThe Opteron X4 Pipeline Flow

 For integer operationsg p

 FP is 5 stages longer
 Up to 106 RISC-ops in progress

B ttl k Bottlenecks
 Complex instructions with long dependencies

Branch mispredictions

226

 Branch mispredictions
 Memory access delays

FallaciesFallacies

 Pipelining is easy (!) Pipelining is easy (!)
 The basic idea is easy
 The devil is in the details The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology
 So why haven’t we always done pipelining?
 More transistors make more advanced techniques

f iblfeasible
 Pipeline-related ISA design needs to take account

of technology trends

227

of technology trends
 e.g., predicated instructions

PitfallsPitfalls

Poor ISA design can make pipelining Poor ISA design can make pipelining
harder

e g omple in t tion et (VAX IA 32) e.g., complex instruction sets (VAX, IA-32)
 Significant overhead to make pipelining work

IA-32 micro-op approach IA-32 micro-op approach

 e.g., complex addressing modes
 Register update side effects memory Register update side effects, memory

indirection

 e.g., delayed branches

228

g , y
 Advanced pipelines have long delay slots

Advanced PipeliningAdvanced Pipelining
 This class has given you the background g y g

you need to learn more!

229

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concluding RemarksConcluding Remarks

 ISA influences design of datapath and control ISA influences design of datapath and control
 Datapath and control influence design of ISA

Pipelining improves instruction throughput Pipelining improves instruction throughput
using parallelism
 More instructions completed per second More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control Hazards: structural, data, control
 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

230

Dependencies limit achievable parallelism
 Complexity leads to the power wall

