
Chapter 4p
Let’s build a processor!
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IntroductionIntroduction

 CPU performance factors CPU performance factors
 Instruction count

 Determined by ISA and compiler
 CPI and Cycle time

 Determined by CPU hardware

 We will examine three MIPS implementations We will examine three MIPS implementations
 A simplified version (single cycle and multi-cycle)
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

A ith ti /l i l dd b d lt
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 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j



Instruction ExecutionInstruction Execution

 PC  instruction memory fetch instruction PC  instruction memory, fetch instruction
 Register numbers  register file, read 

registersregisters
 Depending on instruction class

 Use ALU to calculate Use ALU to calculate
 Arithmetic result
 Memory address for load/store

h dd Branch target address

 Access data memory for load/store
 PC  target address or PC + 4
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 PC  target address or PC + 4



CPU OverviewCPU Overview
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MultiplexersMultiplexers

 Can’t just join Can t just join 
wires together
 Use multiplexersp
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ControlControl
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Logic Design BasicsLogic Design Basics

Information encoded in binary Information encoded in binary
 Low voltage = 0, High voltage = 1

O i bit One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
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( q )
 Store information



Combinational ElementsCombinational Elements
 AND-gate A

Y+
 Adder

 Y = A & B
A

Y

B
Y+

 Y = A + B

B
Y

Multiplexer
 Arithmetic/Logic Unit

 Multiplexer
 Y = S ? I1 : I0

A

 Y = F(A, B)

I0
I1

Y
M
u
x

B

YALU
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State Elements

Unclocked vs Clocked

S a e e e s

 Unclocked vs. Clocked
 Clocks used in synchronous logic

 when should an element that contains 
state be updated?

falling edge

cycle time
i i d
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An unclocked state element

The set reset latch

 u c oc ed s a e e e e

 The set-reset latch
 output depends on present inputs and also 

on past inputson past inputs
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Latches and Flip-flops

Output is equal to the stored value

a c es a d p ops

 Output is equal to the stored value 
inside the element

(don't need to ask for permission to(don t need to ask for permission to 
look at the value)
Ch f t t ( l ) i b d th Change of state (value) is based on the 
clock
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Latches and Flip-flops

Latches: whenever the inputs change

a c es a d p ops

 Latches:  whenever the inputs change, 
and the clock is asserted

"logically true"

 Flip-flop:  state changes only on a clock 

"logically true", 
— could mean electrically low

edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written
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D-latch

Two inputs:

a c

 Two inputs:
 the data value to be stored (D)

th l k i l (C) i di ti h t d the clock signal (C) indicating when to read 
& store D

T t t Two outputs:
 the value of the internal state (Q) and it's 

l tcomplement
Q

C
D

C
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D flip-flop p op

Output changes only on the clock edge Output changes only on the clock edge
QQ

_
Q

Q

_
Q

D 
latch

D

C

D 
latch

DD

C

 

Q QCC

C

D

C

Q
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Sequential ElementsSequential Elements
 Register: stores data in a circuitg

 Uses a clock signal to determine when to 
update the stored value

 Edge-triggered: update when Clk changes 
from 0 to 1

D Q Clk
D

Clk
D
Q

15



Sequential ElementsSequential Elements
 Register with write controlg

 Only updates on clock edge when write 
control input is 1

 Used when stored value is required later

Clk

D Q Write

Clk

Clk
Write D

Q
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Clocking MethodologyClocking Methodology
 Combinational logic transforms data during g g

clock cycles
 Between clock edges
 Input from state elements, output to state 

element
L t d l d t i l k i d Longest delay determines clock period
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Register File

Built using D flip flops

eg s e  e

 Built using D flip-flops
Register 0
Register 1 M 

u Read data 1

Read register 
number 1

Read register 
number 1 Read

M

Register n –  1
Register n

u
x

Read data 1

Read register 
number 2

data 1

Read 
data 2

Read register 
number 2

Register file
Write 
register

Write 
data Write

M
u 
x

Read data 2

Do you understand? What is the “Mux” above?
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Do you understand?  What is the Mux  above?



AbstractionAbstraction

Make sure you understand the abstractions! Make sure you understand the abstractions!
 Sometimes it is easy to think you do, when 

d ’t
Select

you don’t
Select

32A

M
u
x

B31

A31

C31

M
u
x

C
32

32

B

A

M
u
x

B30

A30

C30
...

...

M
u
x

B0

A0

C0
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Register Fileeg s e  e

Note: we still use the real clock to Note: we still use the real clock to 
determine when to write

n-to-1 
decoder

Register 0

Register 1

C

C

D

Register number

Write

0
1

decoder Register 1

Register n –  1
C

D

D
n –  1

n

C

D

D
Register n

Register data
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Simple ImplementationS p e p e e a o

Include the functional units we need for Include the functional units we need for 
each instruction

PC

Instruction 
memory

Instruction 
address

Instruction Add Sum

16 32
Sign 

extend

MemWrite

Read 
data

Address

a. Instruction memory b. Program counter c. Adder

ALU control

Read 
data 1

Read 
register 1

R i 5

5 3

extend

b. Sign-extension unit

MemRead

Data
memory

Write 
data

a. Data memory unit

Why do we need this stuff?
RegWrite

Registers
Write 
register

data 1

Read 
data 2

Read 
register 2

Write 
data

ALU 
result

ALU

Data

Data

Register 
numbers Zero

5

5
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RegWrite

a. Registers b. ALU



Building a DatapathBuilding a Datapath

Datapath Datapath
 Elements that process data and addresses

in the CPUin the CPU
 Registers, ALUs, mux’s, memories, …

We will build a MIPS datapath We will build a MIPS datapath 
incrementally

R fi i th i d i Refining the overview design
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Instruction FetchInstruction Fetch

32-bit 
register

Increment by 
4 for next 
instruction

register

23



R Format InstructionsR-Format Instructions
 Read two register operandsg p
 Perform arithmetic/logical operation
 Write register result Write register result
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Load/Store InstructionsLoad/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
d d d d Load: Read memory and update register

 Store: Write register value to memory
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Branch InstructionsBranch Instructions

Read register operands Read register operands
 Compare operands

 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement
 Shift left 2 places (word displacement)p ( p )
 Add to PC + 4

 Already calculated by instruction fetch
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Branch InstructionsBranch Instructions

Just
re-routes 
wires
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Composing the ElementsComposing the Elements

First cut data path does an instruction First-cut data path does an instruction 
in one clock cycle

E h d t p th element n onl do one Each datapath element can only do one 
function at a time
Hence we need separate instruction and Hence, we need separate instruction and 
data memories

Use multiplexers where alternate data Use multiplexers where alternate data 
sources are used for different 
instructions

28
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R Type/Load/Store DatapathR-Type/Load/Store Datapath
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Full DatapathFull Datapath
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ControlCo o

Selecting the operations to perform Selecting the operations to perform 
(ALU, read/write, etc.)

 Controlling the flow of data (multiplexer 
inputs)inputs)

 Information comes from the 32 bits of 
the instruction
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ControlCo o

Example: Example:
add $8, $17, $18

 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

 ALU's operation based on instruction 
type and function code
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Control

e g what should the ALU do with this

Co o

 e.g., what should the ALU do with this 
instruction
Example: lw $1 100($2) Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit number
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ALU ControlALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtractBranch: F  subtract
 R-type: F depends on funct field

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than

34

0111 set-on-less-than
1100 NOR



ALU ControlALU Control

Assume 2 bit ALUOp derived from Assume 2-bit ALUOp derived from 
opcode

Combin tion l logi de i e ALU ont ol Combinational logic derives ALU control
opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010
sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010yp

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

35

OR 100101 OR 0001
set-on-less-than 101010 set-on-less-than 0111



The Main Control UnitThe Main Control Unit
 Control signals derived from instructiong

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6
R-type

35 or 43 rs rt address

31:26 25:21 20:16 15:0

Load/
Store

4 rs rt address

31:26 25:21 20:16 15:0
Branch

opcode always 
read

read, 
except 
f l d

write for 
R-type 

d l d

sign-extend 
and add
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ControlCo o

Add

RegDst

Add ALU 
result

M 
u 
x

0

1

Shift 
left 2

Instruction [25– 21]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

Control

Read
PC

Instruction 
memory

Read 
address

Instruction 
[31– 0]

Instruction [20– 16]

0

0M 
u 
x

0

1

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read
register 1

Read 
register 2

M 
u 
x

1

ALU 
result

Zero

Data 
memory

Write 
data

Read 
data

M 
u 
x

1

Instruction [15– 11]

ALU
Address

Instruction [5– 0]

16 32Instruction [15– 0] Sign 
extend ALU 

control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
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sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1



ControlCo o

 Simple combinational logic (truth 
tables)

Op5

Inputs
Instruction

d
ALUOp0

ALUOp

ALU control block
Op0
Op1
Op2
Op3
Op4
Op5

Decoding

Operation2

Operation1
Operation

ALUOp1

F3

F2

F1
F (5– 0)

R-format Iw sw beq

Outputs

RegDst

ALUSrc

MemtoReg
Operation0

F1

F0

g

RegWrite

MemRead

MemWrite

Branch

ALUOp1
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ALUOpO



Our Simple Control Structure

All of the logic is combinational

Ou  S p e Co o  S uc u e

 All of the logic is combinational

 We wait for everything to settle down, 
and the right thing to be done
 ALU might not produce “right answer” right ALU might not produce right answer  right 

away

i i l l i h l k we use write signals along with clock to 
determine when to write
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Our Simple Control Structure

Cycle time determined by length of the

Ou  S p e Co o  S uc u e

 Cycle time determined by length of the 
longest path

State 
element 

1
Combinational logic

State 
element 

2

Clock cycle

We are ignoring some details like setup and hold times
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Datapath With ControlDatapath With Control
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R Type InstructionR-Type Instruction
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Load InstructionLoad Instruction
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Branch on Equal InstructionBranch-on-Equal Instruction
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Implementing JumpsImplementing Jumps
2 addressJump

 Jump uses word address
31:26 25:0

Jump

 Update PC with concatenation of
 Top 4 bits of old PCp
 26-bit jump address
 00 00

 Need an extra control signal decoded from 
opcode

45Chapter 4 — The Processor — 45

opcode



Datapath With Jumps AddedDatapath With Jumps Added
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Performance IssuesPerformance Issues
 Longest delay determines clock period

 Critical path: load instruction
 Instruction memory  register file  ALU 
 data memory  register file

 Not feasible to vary period for different y p
instructions

 Violates design principle Violates design principle
 Making the common case fast

 We will improve performance by
47

 We will improve performance by 
pipelining



Where we are headede e e a e eaded

Single Cycle Problems: Single Cycle Problems:
 what if we had a more complicated 

instruction like floating point?instruction like floating point?
 requires more area

O S l ti One Solution:
 use a “smaller” cycle time
 have different instructions take different 

numbers of cycles
“ l i l ” d h
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 a “multicycle” datapath:



Where we are headede e e a e eaded

 One Solution: One Solution:
 use a “smaller” cycle time
 have different instructions take different numbers have different instructions take different numbers 

of cycles
 a “multicycle” datapath:

PC Address

Instruction 
register Data

R i #
A

Memory Instruction 
or data

Data

Registers
Register #

Register #

Register #

ALU

Memory 
data  

register
B

ALUOut
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Multicycle Approach

 We will be reusing functional units

u cyc e pp oac

 We will be reusing functional units
 ALU used to compute address and to increment 

PC
 Memory used for instruction and data

 Our control signals will not be determined 
soley by instruction
 e.g., what should the ALU do for a “subtract” 

i t ti ?instruction?

 We’ll use a finite state machine for control
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Review:  finite state 
hi

 Finite state machines:
a set of states and

machines

 a set of states and 
 next state function (determined by current state and the 

input)
 output function (determined by current state and possibly 

input)

Next-state Current state

Next 
state

functionCurrent state

Clock

Output 
function Outputs

Inputs

 We’ll use a Moore machine (output based only on current 
state)

function p
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Review:  finite state 
himachines

 Example: Example:
B. 21 A friend would like you to build an “electronic eye” for use as 
a fake security device.  The device consists of three lights lined up in a 
row controlled by the outputs Left Middle and Right which ifrow, controlled by the outputs Left, Middle, and Right, which, if 
asserted, indicate that a light should be on.  Only one light is on at a 
time, and the light “moves” from left to right and then from right to 
left, thus scaring away thieves who believe that the device is left, thus sca ing away thieves who believe that the device is
monitoring their activity.  Draw the graphical representation for the 
finite state machine used to specify the electronic eye.  Note that the 
rate of the eye’s movement will be controlled by the clock speed (which 
should not be too great) and that there are essentially no inputs.
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Multicycle Approach

Break up the instructions into steps

u cyc e pp oac

 Break up the instructions into steps, 
each step takes a cycle

balance the amo nt of o k to be done balance the amount of work to be done
 restrict each cycle to use only one major 

functional unitfunctional unit

 At the end of a cycle
 store values for use in later cycles (easiest 

thing to do)
i t d dditi l “i t l” i t
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 introduce additional “internal” registers



Multicycle Approach

At the end of a cycle

u cyc e pp oac

 At the end of a cycle
 store values for use in later cycles (easiest 

thing to do)thing to do)
 introduce additional “internal” registers

PC

Memory

 

MemData

Write 
data

M 
u 
x

0

1

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

M 
u 
x

0

1
4

Instruction 
[25– 21]

Instruction 
[20– 16]

Instruction 
[15– 0]

Instruction 
register

1 M 
u 
x

0

2

M 
u 
x

ALU 
result

ALU
Zero

Instruction 
[15– 11]

 
A

B

ALUOut

0

1

Address

Shift 
left 2

M 
u 
x

0

1

Instruction 
[15– 0]

Sign 
extend

3216

x
3

Memory 
data 

register
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Instructions from ISA 
perspectiveperspective

 Consider each instruction from perspective of p p
ISA.

 Example: Example:  
 The add instruction changes a register.  
 Register specified by bits 15:11 of instruction Register specified by bits 15:11 of instruction.  
 Instruction specified by the PC.  

New value is the sum (“op”) of two registers New value is the sum ( op ) of two registers.  
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Instructions from ISA 
perspectiveperspective

 Example:  p
 Registers specified by bits 25:21 and 20:16 of 

the instruction
Reg[Memory[PC][15:11]] <=  
Reg[Memory[PC][25:21]] op          
R [M [PC][20 16]]Reg[Memory[PC][20:16]]

In order to accomplish this we must break up In order to accomplish this we must break up 
the instruction.
(kind of like introducing variables when
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(kind of like introducing variables when 
programming)



Breaking down an 
instructioninstruction

 ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= 
Reg[Memory[PC][25:21]]  op

Reg[Memo [PC][20 16]]Reg[Memory[PC][20:16]]
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Breaking down an 
instructioninstruction

 Could break down to:
 IR <= Memory[PC]
 A <= Reg[IR[25:21]]
 B <= Reg[IR[20:16]]
 ALUOut <= A op B
 Reg[IR[20:16]] <= ALUOut

 We forgot an important part of the 
definition of arithmetic!
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 PC <= PC + 4



Idea behind multicycle 
approachapproach

 We define each instruction from the ISA We define each instruction from the ISA 
perspective  (do this!)

 Break it down into steps following our rule 
that data flows through at most one majorthat data flows through at most one major 
functional unit  (e.g., balance work across 
steps)
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Idea behind multicycle 
approachapproach

 Introduce new registers as needed (e g A Introduce new registers as needed  (e.g, A, 
B, ALUOut, MDR, etc.)

 Finally try and pack as much work into each 
stepstep 

(avoid unnecessary cycles)
while also trying to share steps where 
possible

(minimizes control, helps to simplify 
l ti )
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Five Execution Steps

 Instruction Fetch

e ecu o  S eps

 Instruction Fetch
 Instruction Decode and Register Fetch

Execution Memory Address Computation or Execution, Memory Address Computation, or 
Branch Completion

 Memory Access or R-type instruction Memory Access or R-type instruction 
completion

 Write-back step Write back step
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
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Step 1:  Instruction Fetch

 Use PC to get instruction and put it in the 

S ep :  s uc o  e c

g p
Instruction Register.

 Increment the PC by 4 and put the result back in 
the PC.

 Can be described succinctly using RTL "Register-
Transfer Language"

IR = Memory[PC];
PC PC + 4;PC = PC + 4;

Can we figure out the values of the control signals?
What is the advantage of updating the PC now?
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What is the advantage of updating the PC now?



Step 2:  Instruction Decode and Register Fetch

 Read registers rs and rt in case we need them
C t th b h dd i th i t ti i

S p g

 Compute the branch address in case the instruction is 
a branch

 RTL: RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);ALUOut  PC + (sign extend(IR[15 0]) << 2);

 We aren't setting any control lines based on the 
instruction type 

( b "d di " it i t l l i )(we are busy "decoding" it in our control logic)
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Step 3 (instruction dependent)

 ALU is performing one of three functions

p ( p )

 ALU is performing one of three functions, 
based on instruction type

 Memory Reference: Memory Reference:
ALUOut = A + sign-extend(IR[15-0]);

 R-type:yp
ALUOut = A op B;

 Branch:
if (A==B) PC = ALUOut;
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Step 4 (R-type or memory-
access)

Loads and stores access memory

access)

 Loads and stores access memory
MDR = Memory[ALUOut];

oror
Memory[ALUOut] = B;

R t i t ti fi i h R-type instructions finish
Reg[IR[15-11]] = ALUOut;

Th it t ll t k l t thThe write actually takes place at the 
end of the cycle on the edge
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Write-back step

 Reg[IR[20-16]]= MDR;

e bac  s ep

 Reg[IR[20-16]]= MDR;

Whi h i i d hi ?Which instruction needs this?
What about all the other instructions?
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Summary:y

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]g [ [ ]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completionjump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDRy p
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Simple Questions
 How many cycles will it take to execute this code?

lw $t2 0($t3)

S p e Ques o s

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

 What is going on during the 8th cycle of execution?
 In what cycle does the actual addition of $t2 and 
$t3 takes place?
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Implementing the Control

 Value of control signals is dependent upon:

p e e g e Co o

g p p
 what instruction is being executed
 which step is being performedp g p

 Use the information we’ve acculumated to 
specify a finite state machinespecify a finite state machine
 specify the finite state machine graphically, or

use microprogramming use microprogramming

 Implementation can be derived from 
specification

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

specification



Graphical Specification of FSM

 Note:

p p

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 00

MemRead 
ALUSrcA = 0 

IorD = 0 
IRWrite 

ALUSrcB = 01

Instruction fetch
Instruction decode/ 

register fetch
0

1

Start

 don’t care if 
not 
mentioned
asserted if

ALUOp = 00ALUSrcB = 01 
ALUOp = 00 

PCWrite 
PCSource = 00

Jump 
completion

Branch 
completionExecution

Memory address 
computation

= 'LW') or (Op = 'SW') (Op = R-type)

(O
p 

= '
BEQ')

(O
p 

= 
'J

')

 asserted if 
name only

 otherwise 
exact value

PCWrite 
PCSource = 10

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 01 
PCWriteCond 

PCSource = 01

ALUSrcA =1 
ALUSrcB = 00 
ALUOp= 10

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 00

 (Op = LW

 (Op')
9862

 How many 
t t bit ill

RegDst = 1 
RegWriteMemWriteMemRead

Memory 
access

Memory 
access R-type completion

p = 'SW
')

(O
p 

= 
'L

W
'

753

state bits will 
we need?

RegWrite 
MemtoReg = 0IorD = 1IorD = 1

Write-back step
4
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RegDst = 0 
RegWrite 

MemtoReg =1 
 



Finite State Machine for 
C t l

Implementation:

Control

 Implementation:
PCWrite

PCWriteCond
IorD
MemRead
MemWrite

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA

IRWrite

Outputs

Control logic

RegWrite
RegDst

NS3
NS2
NS1
NS0Inputs

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State registerInstruction register 
opcode field
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PLA Implementation p e e a o

 If I picked a horizontal
Op5

Op4

 If I picked a horizontal 
or vertical line could 
you explain it?

Op3

Op2

Op1

Op0you explain it?
S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoRegMemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
R W it

ALUSrcB1
ALUOp0

PCSource0
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RegWrite
RegDst
NS3
NS2
NS1
NS0



ROM Implementation

ROM = "Read Only Memory"

O  p e e a o

 ROM = Read Only Memory
 values of memory locations are fixed ahead 

of timeof time

 A ROM can be used to implement a 
truth tabletruth table
 if the address is m-bits, we can address 2m

entries in the ROMentries in the ROM.
 our outputs are the bits of data that the 

address points to
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address points to.



ROM Implementation
 A ROM can be used to implement a truth 

t bl

O  p e e a o

table
 if the address is m-bits, we can address 2m entries 

in the ROMin the ROM.
 our outputs are the bits of data that the address 

points to.

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 01 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1
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m is the "heigth", and n is the "width"



ROM Implementation

How many inputs are there?

O  p e e a o

 How many inputs are there?
6 bits for opcode, 4 bits for state = 

10 address lines10 address lines
(i.e., 210 = 1024 different 

addresses)addresses)
 How many outputs are there?

16 d t th t l t t 4 t t16 datapath-control outputs, 4 state 
bits = 20 outputs
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ROM Implementation

ROM is 210 x 20 = 20K bits (and a

O  p e e a o

 ROM is 210 x 20 = 20K bits    (and a 
rather unusual size)

 Rather wasteful, since for lots of the 
t i th t t thentries, the outputs are the same
— i.e., opcode is often ignored
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ROM vs PLA

Break up the table into two parts

O  s 

 Break up the table into two parts
— 4 state bits tell you the 16 

outputs,    24 x 16 bits of ROM
— 10 bits tell you the 4 next state 0 b ts te you t e e t state

bits,  210 x 4 bits of ROM
Total: 4 3K bits of ROM— Total:  4.3K bits of ROM
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ROM vs PLA

PLA is much smaller

O  s 

 PLA is much smaller
— can share product terms
— only need entries that produce an 

active outputact e output
— can take into account don't cares

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



ROM vs PLA

Size is (#inputs #product terms) +

O  s 

 Size is (#inputs  #product-terms) + 
(#outputs  #product-terms)

For this example  =  
(10x17)+(20x17) = 460 PLA cells( 0 ) ( 0 ) 60 ce s

PLA ll ll b h i f PLA cells usually about the size of a 
ROM cell (slightly bigger)
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Another Implementation Style

 Complex instructions:  the "next state" is 
ft t t t 1

p y

often current state + 1

PLA or ROM

Control unit PCWrite
PCWriteCond
IorD
MemRead
MemWrite

Outputs MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

IRWrite
BWrite

AddrCtl

State

Add

1

Input

RegWrite
RegDst

Address select logic

O
p[

5–
0]

Adder
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Instruction register 
opcode field



Details
Di t h ROM 1 Di t h ROM 2Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010

PLA or ROM

101011 sw 0010

State

Adder

1

Mux
3 2 1 0

AddrCtl

3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

Address select logic

State number Address-control action Value of AddrCtl
0 U i d 3

O
p

Address select logic

Instruction register 
opcode field

0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
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5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0



Microprogrammingc op og a g
PCWrite
PCWriteCond
IorD

Control unit

MemtoReg
PCSource
ALUOp
ALUSrcB

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

Datapath

BWrite

ALUSrcB
ALUSrcA
RegWrite

AddrCtl
RegDst

Input

1

Microprogram counter

Address select logic

[5
–

0]

Adder

 What are the “microinstructions” ?

O
p[

Instruction register 
opcode field

82

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 What are the microinstructions  ?



Microprogramming

A specification methodology

c op og a g

 A specification methodology
 appropriate if hundreds of opcodes, 

modes cycles etcmodes, cycles, etc.
 signals specified symbolically using 

microinstructionsmicroinstructions
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Microprogrammingc op og a g

ALU Register PCWrite 
Label control SRC1 SRC2 control Memory control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 R d ALU SLW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch

 Will two implementations of the same architecture 

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

p f
have the same microcode?

 What would a microassembler do?
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Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to addAdd ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU inputB ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
W it ALU R W it W it i t i th d fi ld f th IR th i t b dWrite ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

R d PC M R d R d i th PC dd it lt i t IR ( dRead PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
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Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.



Maximally vs. Minimally 
Encoded

No encoding:

Encoded

 No encoding:
 1 bit for each datapath operation
 faster, requires more memory (logic)
 used for Vax 780 — an astonishing 400K of 

memory!
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Maximally vs. Minimally 
Encoded

Lots of encoding:

Encoded

 Lots of encoding:
 send the microinstructions through logic to 

t t l i lget control signals
 uses less memory, slower
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Maximally vs. Minimally 
Encoded

Historical context of CISC:

Encoded

 Historical context of CISC:
 Too much logic to put on a single chip with 

thi leverything else
 Use a ROM (or even RAM) to hold the 

microcode
 It’s easy to add new instructions
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Microcode:  Trade-offsc ocode:  ade o s

 Distinction between specification and Distinction between specification and 
implementation is sometimes blurred

 Specification Advantages:
 Easy to design and write

Design architecture and microcode in Design architecture and microcode in 
parallel
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Microcode:  Trade-offsc ocode:  ade o s

Implementation (off chip ROM) Implementation (off-chip ROM) 
Advantages
 Easy to change since values are in memory

 Can emulate other architectures Can emulate other architectures

 Can make use of internal registers
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Microcode:  Trade-offsc ocode:  ade o s

Implementation Disadvantages Implementation Disadvantages,  
SLOWER now  that:
 Control is implemented on same chip as 

processorp

 ROM is no longer faster than RAM

No need to go back and make changes No need to go back and make changes
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The Big Picturee g c u e

Initial 
representation

Finite state 
diagram Microprogram

Sequencing 
control

Explicit next 
state function

Microprogram counter 
+ dispatch ROMS

Logic 
representation

Logic 
equations

Truth 
tables

Implementation 
technique

Programmable 
logic array

Read only 
memory
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Historical PerspectiveHistorical Perspective

 In the ‘60s and ‘70s microprogramming In the 60s and 70s microprogramming 
was very important for implementing 
machinesmachines

 This led to more sophisticated ISAs and 
the VAXthe VAX

 In the ‘80s RISC processors based on 
pipelining became popularpipelining became popular

 Pipelining the microinstructions is also 
possible!
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possible!



Historical PerspectiveHistorical Perspective

 Implementations of IA-32 architecture Implementations of IA-32 architecture 
processors since 486 use:
 “hardwired control” for simpler instructions hardwired control  for simpler instructions 

(few cycles, FSM control implemented using PLA 
or random logic)
“ d d l” f l “microcoded control” for more complex 
instructions
(large numbers of cycles, central control store)(large numbers of cycles, central control store)
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Historical PerspectiveHistorical Perspective

 The IA-64 architecture uses a RISC- The IA-64 architecture uses a RISC-
style ISA and can be implemented 
without a large central control storewithout a large central control store
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Pentium 4Pentium 4
 Pipelining is important (last IA-32 without it was p g p (

80386 in 1985)
Control

Control

I/O
interface

Enhanced
floating point
and multimedia

interface

Instruction cache

Integer
d h

Data
cache

Chapter 5

C t l

Control

datapath Secondary
cache
and
memory
interface

Advanced pipelining

Chapter 4

ControlAdvanced pipelining
hyperthreading support
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Pentium 4Pentium 4
 Pipelining is used for the simple instructions favored p g p

by compilers

“ l h h f l“Simply put, a high performance implementation 
needs to ensure that the simple instructions execute 
quickly and that the burden of the complexities ofquickly, and that the burden of the complexities of 
the instruction set penalize the complex, less 
frequently used, instructions”frequently used, instructions
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Pentium 4Pentium 4
 Somewhere in all that “control” we must handle complex 

instructions

Control

Control

Enhanced
fl ti i t

I/O
interface

Instruction cache

Data
cache

Control

floating point
and multimedia Integer

datapath Secondary
cache
and
memory
interface

ControlAdvanced pipelining
hyperthreading support
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Pentium 4Pentium 4
 Processor executes simple microinstructions, 70 bits wide 

(hardwired)
 120 control lines for integer datapath (400 for floating 

point)point)
 If an instruction requires more than 4 microinstructions to 

implement, 
control from microcode ROM (8000 microinstructions)

 Its complicated! 
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SummarySummary

If we understand the instructions If we understand the instructions…
We can build a simple processor!

 If instructions take different amounts of 
time multi cycle is bettertime, multi-cycle is better

 Datapath implemented using:g

 Combinational logic for arithmetic

State holding elements to emembe bits
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 State holding elements to remember bits



SummarySummary

Control implemented using: Control implemented using:

 Combinational logic for single-cycle 
implementation

 Finite state machine for multi-cycle Finite state machine for multi cycle 
implementation
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Pipeliningpe g
 Improve performance by increasing 

i t ti th h tinstruction throughput

Instruction 
fetch Reg ALU Data 

access Reg

Time

lw $1, 100($0)

2 4 6 8 10 12 14 16 18
Program 
execution 
order 
(in instructions)

fetch access

8 ns
Instruction 

fetch Reg ALU Data 
access Reg

8 ns
Instruction 

fetch

 8 ns

lw $2, 200($0)

lw $3, 300($0)

...

2 4 6 8 10 12 14

Instruction 
fetch Reg ALU Data 

access Reg

Time

lw $1, 100($0)

lw $2, 200($0) 2 ns
Instruction 

f t h Reg ALU Data Reg

 

Program 
execution 
order 
(in instructions)

Ideal speedup is number of stages in the pipeline.  

$ , 00($0)

lw $3, 300($0)

2 ns fetch g access g

2 ns Instruction 
fetch Reg ALU Data 

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns
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Do we achieve this?



Pipelining AnalogyPipelining Analogy
 Pipelined laundry: overlapping executionp y pp g

 Parallelism improves performance

 Four loads:
 Speedupp p

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

103
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Pipeliningpe g

 What makes it easyy
 all instructions are the same length
 just a few instruction formats
 memory operands appear only in loads and stores

 What makes it hard?
 structural hazards:   suppose we had only one 

memory
 control hazards: need to worry about branch control hazards:  need to worry about branch 

instructions
 data hazards:  an instruction depends on a 
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previous instruction



Pipeliningpe g

We’ll build a simple pipeline and look at We ll build a simple pipeline and look at 
these issues

 We’ll talk about modern processors and 
h t ll k it h dwhat really makes it hard:

 exception handling
 trying to improve performance with out-of-

order execution, etc.
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Basic Ideaas c dea

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access WB: Write back

M 
u 
x

0

1

Add

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Instruction 

Address

4

0

Add Add 
result

Shift 
left 2

Instruction

PC

M 

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
register

Read 
dataAddress

Data

ALU 
result

M 
u

ALU
Zero

memory

32

0Write 
data

u 
x

16
Sign 

extend

Write 
data

Data
memory

1

u
x

 What do we need to add to actually split the 
d h i ?
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datapath into stages?



Pipelined Datapathpe ed a apa
M 
u 
x

0

1

4 Add Add 
result

Shift 
left 2

n

IF/ID EX/MEM MEM/WB

Add

Read

ID/EX

Instruction 

memory

Address

32

0
In

st
ru

ct
ioPC

0Write 
data

M 
u 
x

1
Registers

Read 
data 1

Read 
data 2

register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU
Zero

Data 

memory

Address

Can you find a problem even if there are no 
dependencies?dependencies?  
What instructions can we execute to 
manifest the problem?
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manifest the problem?



Corrected DatapathCo ec ed a apa

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

ID/EX

Instruction 

memory

Address

4

0

Add Add 
result

Shift 
left 2

In
st

ru
ct

io
n

PC

Address
M 
u

1
Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
register

W it

Read 
data

Data 

ALU 
result

M 
u 

ALU
Zero

32

0Write 
data

u
x

16
Sign 

extend

Write
data

memory
1
x
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Graphically Representing 
PipelinesPipelines

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Program 
execution 
order

IM Reg DM Reg

IM Reg DM Reg

lw $10, 20($1)

order 
(in instructions)

sub $11 $2 $3

ALU

ALU

 Can help with answering questions like:

IM Reg DM Regsub $11, $2, $3 ALU

 how many cycles does it take to execute 
this code?

h i h ALU d i d i l 4? what is the ALU doing during cycle 4?
 use this representation to help understand 

d t th
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datapaths



Pipeline Controlpe e Co o

PCSrc

IF/ID ID/EX EX/MEM MEM/WB

0

1

M 
u 
x

PC Address

ru
ct

io
n

Branch

ALUS

4

Read 
data 1

Read 
register 1

R d

RegWrite

MemWrite

Add Add 
result

Shift 
left 2

Add

Instruction 
memory

In
st

r

MemtoRegALUSrc

16 32
Instruction 
[15– 0]

0

0
Registers

Write 
register

Write 
data

data 1

Read 
data 2

Read
register 2

Sign

M 
u 
x

1
Write 

data

Read 

data M 
u 
x

1

ALU
6

Address

Data 
memory

Zero
ALU 

result
ALU

Zero

Instruction 
[20– 16]

ALUOp

RegDst

Sign
extend

ALU
control MemRead

Instruction 
[15– 11]

0

1

M 
u 
x
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Pipeline control

We have 5 stages What needs to be

pe e co o

 We have 5 stages.  What needs to be 
controlled in each stage?

Inst ction Fetch and PC Inc ement Instruction Fetch and PC Increment
 Instruction Decode / Register Fetch

E ti Execution
 Memory Stage
 Write Back
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Pipeline control

How would control be handled in an

pe e co o

 How would control be handled in an 
automobile plant?

a fanc cont ol cente telling e e one a fancy control center telling everyone 
what to do?
should we use a finite state machine? should we use a finite state machine?

112

Electrical and Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Pipeline Control
 Pass control signals along just like the data

pe e Co o

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

stage control 
lines

Reg ALU ALU ALU Mem Mem Reg Mem to 
Instruction Dst Op1 Op0 Src Branch Read Write write Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Control M

WB

WBInstruction

EX M WB
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IF/ID ID/EX EX/MEM MEM/WB



Datapath with Controla apa   Co o
PCSrc

Control

EX

M

WB

M

WB

WBIF/ID

ID/EX

EX/MEM

MEM/WB

M 
u 
x

0

1

PC

ru
ct

io
n

Add

m
to

R
eg

Branch

ALUSrc

4 Add Add 
result

Read 
data 1

Read 
register 1

R d

Shift 
left 2

R
eg

W
rit

e

M
em

W
rit

e

Address

Instruction 
memory

In
st

r

M
em

16 32Instruction 
[15 0]

0

0
Registers

Write 
register

Write 
data

data 1

Read 
data 2

Read
register 2

Si

M 
u 
x

1

ALU 
result

Zero

Write 
data

Read 
data

M 
u 
x

1

ALU

ALU

6

Address
Data 

memory

Instruction 
[20– 16]

ALUOp

RegDst

[15– 0]

M 
u 
x

0

1

Sign
extend

ALU
control

MemRead

Instruction 
[15– 11]
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Dependencies
 Problem with starting next instruction before first is 

finished

epe de c es

finished
 dependencies that “go backward in time” are data hazards

Time (in clock cycles)

IM R

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

( y )

b $2 $1 $3

Program 
execution 
order 
(in instructions)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20
Value of  
register $2:

DM RegIM Reg

IM Reg

sub $2, $1, $3

and $12, $2, $5

DM Reg

Reg DM

IM Reg DM Reg

IM DM Reg

or $13, $6, $2

add $14, $2, $2 Reg
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IM DM Regsw $15, 100($2) Reg



Software Solution
 Have compiler guarantee no hazards

So a e So u o

 Where do we insert the “nops” ?

b $2 $1 $3sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

 Problem:  this really slows us down!
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MIPS PipelineMIPS Pipeline

Five stages one step per stage Five stages, one step per stage
1. IF: Instruction fetch from memory
2 ID I t ti d d & i t d2. ID: Instruction decode & register read
3. EX: Execute operation or calculate 

addressaddress
4. MEM: Access memory operand
5 WB W it lt b k t i t5. WB: Write result back to register
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Pipeline PerformancePipeline Performance
 Assume time for stages isg

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle 
datapath

Instr Instr fetch Register 
read

ALU op Memory 
access

Register 
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps
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Pipeline PerformancePipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)
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Pipeline SpeedupPipeline Speedup

If all stages are balanced If all stages are balanced
 i.e., all take the same time
Ti b t i t tiTime between instructionspipelined

= Time between instructionsnonpipelined

Number of stagesNumber of stages

 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does 
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Pipelining and ISA DesignPipelining and ISA Design

 MIPS ISA designed for pipelining MIPS ISA designed for pipelining
 All instructions are 32-bits

 Easier to fetch and decode in one cycle Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
C l l dd i 3 d

 Can calculate address in 3rd stage, access 
memory in 4th stage

 Alignment of memory operands
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 Alignment of memory operands
 Memory access takes only one cycle



HazardsHazards

 Situations that prevent starting the next Situations that prevent starting the next 
instruction in the next cycle

 Structure hazards Structure hazards
 A required resource is busy

 Data hazard Data hazard
 Need to wait for previous instruction to 

complete its data read/writecomplete its data read/write
 Control hazard

 Deciding on control action depends on

122

 Deciding on control action depends on 
previous instruction



Structure HazardsStructure Hazards

Conflict for use of a resource Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for 

h lthat cycle
 Would cause a pipeline “bubble”

H i li d d h i Hence, pipelined datapaths require 
separate instruction/data memories
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 Or separate instruction/data caches



Data HazardsData Hazards
 An instruction depends on completion of p p

data access by a previous instruction
add $s0, $t0, $t1, ,
sub $t2, $s0, $t3
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Forwarding (aka Bypassing)Forwarding (aka Bypassing)
 Use result when it is computedp

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapathqu a o o da apa
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Load Use Data HazardLoad-Use Data Hazard
 Can’t always avoid stalls by forwardingy y g

 If value not computed when needed
 Can’t forward backward in time! Can t forward backward in time!
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Forwarding

 Use temporary results, don’t wait for them to be written

o a d g

 register file forwarding to handle read/write to same register
 ALU forwarding

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20Value of register $2 :

IM Regsub $2, $1, $3

Program 
execution order 
(in instructions)

DM Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

IM Regand $12, $2, $5

IM Reg DM Regor $13, $6, $2

Reg DM

IM Reg DM Reg

IM DM Reg

IM DM R

or $13, $6, $2

add $14, $2, $2

$15 100($2) R

Reg
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what if this $2 was $13?

IM DM Regsw $15, 100($2) Reg



Forwardingo a d g

ID/EX

Control

EX

M

WB

M

WB

WB

EX/MEM

MEM/WB

IF/ID

PC Instruction 
memory

Registers

M 
u 
x

M 
u 
x

ALU Data 
memory

M 
u 
x

In
st

ru
ct

io
n

RIF/ID R i t R

Forwarding 
unit

M 
u 
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs
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Can't always forward
 Load word can still cause a hazard:

an instruction tries to read a register following a load instruction that writes to

Ca  a ays o a d

 an instruction tries to read a register following a load instruction that writes to 
the same register

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)
Program 
execution

CC 7 CC 8 CC 9

Reg

IM Reg

IM

lw $2, 20($1)

execution 
order 
(in instructions)

and $4, $2, $5

DM Reg

Reg DM g

IM Reg DM Reg

IM DM Reg

or $8, $2, $6

add $9 $4 $2

g

Reg

Reg

IM DM Reg

IM DM Reg

add $9, $4, $2

slt $1, $6, $7

Reg
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 Thus, we need a hazard detection unit to “stall” the load instruction



StallingS a g

We can stall the pipeline by keeping an We can stall the pipeline by keeping an 
instruction in the same stage

lw $2, 20($1)

Program 
execution 
order 
(in instructions)

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

CC 7 CC 8 CC 9 CC 10

DM Reg

and $4, $2, $5

or $8, $2, $6

RegIM DM

IM Reg DM RegIM

RegReg

bubble

add $9, $4, $2

slt $1, $6, $7 Reg

IM DM Reg

IM DM Reg

Reg

bubble
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Hazard Detection Unita a d e ec o  U

 Stall by letting an instruction that won’t y g
write anything go forward

ID/EX

Hazard 
detection 

unit

ID/EX.MemRead

Control

EX

M

WB

M

WB

WB

EX/MEM

MEM/WB
0

M 
u 
x

IF/ID

IF
/ID

W
rit

e

te

PC Instruction 
memory

Registers

M 
u 
x

M 
u 
x

ALU Data 
memory

M 
u 
x

In
st

ru
ct

io
n

P
C

W
ri

M 
u 
x

Forwarding 
unit

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd
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Code Scheduling to 
Avoid StallsAvoid Stalls

 Reorder code to avoid use of load result in 
the next instruction
C code for A = B + E; C = B + F;C code o ; C ;

lw $t1, 0($t0) lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)
stall

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5  16($t0)
stall

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5  16($t0)
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sw $t5, 16($t0) sw $t5, 16($t0)

11 cycles13 cycles



Control HazardsControl Hazards

 Branch determines flow of control Branch determines flow of control
 Fetching next instruction depends on 

branch outcomebranch outcome
 Pipeline can’t always fetch correct 

instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute 

target early in the pipeline
Add hardware to do it in ID stage

133

 Add hardware to do it in ID stage



Stall on BranchStall on Branch
 Wait until branch outcome determined 

before fetching next instruction
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Flushing Instructionsus g s uc o s

IF.Flush

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Hazard 
detection 

unit

Control

M 
u 
x

M 
u 
x

Instruction

4

Registers
ALU

EX M WB

Data

M 
u 
x

IF/ID

=

Shift 
left 2

PC Instruction 
memory

M 
u 
x

M 
u 
x

ALU Data
memory

Sign 
extend

M 
u 
x

Forwarding 
unit
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Branch PredictionBranch Prediction

Longer pipelines can’t readily determine Longer pipelines can t readily determine 
branch outcome early

St ll pen lt be ome n ept ble Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no 

136

,
delay



MIPS with Predict Not TakenMIPS with Predict Not Taken

Prediction 
correct

Prediction 
incorrect

137



More-Realistic Branch 
PredictionPrediction

 Static branch prediction Static branch prediction
 Based on typical branch behavior
 Example: loop and if-statement branches Example: loop and if statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

e g record recent history of each branch e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

138
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Branch PredictionBranch Prediction

 Sophisticated Techniques: Sophisticated Techniques:
 A “branch target buffer” to help us look up the 

destinationdestination

 Correlating predictors that base prediction on 
l b l b h iglobal behavior

and recently executed branches  (e.g., prediction 
f ififor a specific
branch instruction based on what happened in previous 
branches)
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branches)



Branch PredictionBranch Prediction

 Sophisticated Techniques: Sophisticated Techniques:
 Tournament predictors that use different types 

of prediction strategies and keep track of whichof prediction strategies and keep track of which 
one is performing best.

A “b h d l l t” hi h th il t i t A “branch delay slot” which the compiler tries to 
fill with a useful instruction (make the one cycle 
d l t f th ISA)delay part of the ISA)
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Branch PredictionBranch Prediction

 Branch prediction is especially important Branch prediction is especially important 
because it enables other more advanced 
pipelining techniques to be effective!pipelining techniques to be effective!

 Modern processors predict correctly 95% of 
the time!
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Improving Performancep o g e o a ce

Try and avoid stalls! E g reorder these Try and avoid stalls!  E.g., reorder these 
instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)
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Improving Performancep o g e o a ce

 Dynamic Pipeline Schedulingy p g
 Hardware chooses which instructions to execute 

next
 Will execute instructions out of order (e.g., 

doesn’t wait for a dependency to be resolved, 
but rather keeps going!)

 Speculates on branches and keeps the pipeline 
f llfull 
(may need to rollback if prediction incorrect)

T i t l it i t ti l l ll li
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 Trying to exploit instruction-level parallelism



Improving Performancep o g e o a ce

Add a “branch delay slot” Add a branch delay slot
 the next instruction after a branch is 

always executedalways executed
 rely on compiler to “fill” the slot with 

something usefulsomething useful

 Superscalar: start more than one Superscalar:  start more than one 
instruction in the same cycle
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Dynamic Schedulingy a c Sc edu g

The hardware performs the The hardware performs the 
“scheduling” 
 hardware tries to find instructions to 

execute
 out of order execution is possible
 speculative execution and dynamic branch 

prediction
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Pipeline SummaryPipeline Summary

The BIG Picture

 Pipelining improves performance by 
i i i t ti th h t

The BIG Picture

increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of

146

Instruction set design affects complexity of 
pipeline implementation



MIPS Pipelined DatapathMIPS Pipelined Datapath

MEM

WBRight-to-left 
flow leads to 

147

hazards



Pipeline registersPipeline registers
 Need registers between stagesg g

 To hold information produced in previous cycle
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Pipeline OperationPipeline Operation

Cycle by cycle flow of instructions Cycle-by-cycle flow of instructions 
through the pipelined datapath

“Single lo k le” pipeline di g m “Single-clock-cycle” pipeline diagram
 Shows pipeline usage in a single cycle

Highlight resources used Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time Graph of operation over time

 We’ll look at “single-clock-cycle” 
diagrams for load & store

149

diagrams for load & store



IF for Load  Store  IF for Load, Store, …
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ID for Load  Store  ID for Load, Store, …
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EX for LoadEX for Load
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MEM for LoadMEM for Load
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WB for LoadWB for Load

Wrong
register
number

154

number



Corrected Datapath for 
LoadLoad
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EX for StoreEX for Store
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MEM for StoreMEM for Store
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WB for StoreWB for Store
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Multi-Cycle Pipeline 
DiagramDiagram

 Form showing resource usage
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Multi-Cycle Pipeline 
DiagramDiagram

 Traditional form

160



Single-Cycle Pipeline 
DiagramDiagram

 State of pipeline in a given cyclep p g y
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Pipelined Control 
(Simplified)(Simplified)
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Pipelined ControlPipelined Control
 Control signals derived from instructiong

 As in single-cycle implementation
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Pipelined ControlPipelined Control
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Data Hazards in ALU Instructionsa a a a ds  U s uc o s

Consider this sequence: Consider this sequence:
sub $2, $1,$3
and $12 $2 $5and $12,$2,$5
or  $13,$6,$2
add $14,$2,$2$ ,$ ,$
sw  $15,100($2)

 We can resolve hazards with forwarding We can resolve hazards with forwarding
 How do we detect when to forward?
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Dependencies & ForwardingDependencies & Forwarding
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Detecting the Need to 
ForwardForward

 Pass register numbers along pipelineg g
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register
ALU operand register numbers in EX stage ALU operand register numbers in EX stage 
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt/ g , / g

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

Fwd from
EX/MEM
pipeline reg

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b MEM/WB RegisterRd = ID/EX RegisterRt

pipeline reg

Fwd from
MEM/WB
pipeline reg
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2b. MEM/WB.RegisterRd = ID/EX.RegisterRt pipeline reg



Detecting the Need to 
ForwardForward

But only if forwarding instruction will But only if forwarding instruction will 
write to a register!

EX/MEM RegW ite MEM/WB RegW ite EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not 
$$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB R i Rd 0MEM/WB.RegisterRd ≠ 0
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Forwarding PathsForwarding Paths
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Forwarding ConditionsForwarding Conditions

 EX hazard EX hazard
 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

170

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01



Double Data HazardDouble Data Hazard

Consider the sequence: Consider the sequence:
add $1,$1,$2
add $1 $1 $3add $1,$1,$3
add $1,$1,$4

Both hazards occur Both hazards occur
 Want to use the most recent

R i MEM h d diti Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true
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Revised Forwarding ConditionRevised Forwarding Condition

 MEM hazard MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01ForwardA  01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01
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Datapath with ForwardingDatapath with Forwarding
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Load Use Data HazardLoad-Use Data Hazard

Need to stallNeed to stall 
for one cycle

174



Load Use Hazard DetectionLoad-Use Hazard Detection

 Check when using instruction is Check when using instruction is 
decoded in ID stage

 ALU operand register numbers in ID ALU operand register numbers in ID 
stage are given by
 IF/ID RegisterRs IF/ID RegisterRt IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX MemRead and ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))
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 If detected, stall and insert bubble



How to Stall the PipelineHow to Stall the Pipeline

Force control values in ID/EX register Force control values in ID/EX register
to 0

EX MEM and WB do nop (no operation) EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for 
lw
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 Can subsequently forward to EX stage



Stall/Bubble in the PipelineStall/Bubble in the Pipeline

Stall inserted 
here
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Stall/Bubble in the PipelineStall/Bubble in the Pipeline
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Or, more 
accurately…



Datapath with Hazard 
DetectionDetection
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Stalls and PerformanceStalls and Performance

The BIG Picture

 Stalls reduce performance

The BIG Picture

 But are required to get correct results

 Compiler can arrange code to avoid 
hazards and stalls
 Requires knowledge of the pipeline structure
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Branch HazardsBranch Hazards
 If branch outcome determined in MEM

Flush these
instructionsinstructions
(Set control
values to 0)

181
PC



Reducing Branch DelayReducing Branch Delay

 Move hardware to determine outcome to ID Move hardware to determine outcome to ID 
stage
 Target address adder Target address adder
 Register comparator

 Example: branch takenp
36:  sub  $10, $4, $8
40:  beq  $1,  $3, 7
44:  and  $12, $2, $5, ,
48:  or   $13, $2, $6
52:  add  $14, $4, $2
56:  slt  $15, $6, $7
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...
72:  lw   $4, 50($7)



Example: Branch TakenExample: Branch Taken
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Example: Branch TakenExample: Branch Taken
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Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of p g

2nd or 3rd preceding ALU instruction

IF ID EX MEM WB

IF ID EX MEM WBadd $4, $5, $6

add $1, $2, $3

… IF ID EX MEM WB

add $4, $5, $6

IF ID EX MEM WBbeq $1, $4, target

 Can resolve using forwarding
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 Can resolve using forwarding



Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 
load instruction
 Need 1 stall cycle

IF ID EX MEM WB

IF ID EX MEM WBadd $4, $5, $6

lw  $1, addr

beq stalled IF ID

ID EX MEM WBb  $1  $4  t t
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ID EX MEM WBbeq $1, $4, target



Data Hazards for BranchesData Hazards for Branches
 If a comparison register is a destination of 

immediately preceding load instruction
 Need 2 stall cyclesy

IF ID EX MEM WB

IF IDbeq stalled

lw  $1, addr

beq stalled ID

ID EX MEM WB

q

b  $1  $0  t t
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ID EX MEM WBbeq $1, $0, target



Dynamic Branch PredictionDynamic Branch Prediction

 In deeper and superscalar pipelines branch In deeper and superscalar pipelines, branch 
penalty is more significant

 Use dynamic prediction Use dynamic prediction
 Branch prediction buffer (aka branch history table)
 Indexed by recent branch instruction addressesy
 Stores outcome (taken/not taken)
 To execute a branch

 Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction
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 If wrong, flush pipeline and flip prediction



1 Bit Predictor: Shortcoming1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!p p

outer: …
…

iinner: …

…

beq …, …, inner
…
beq …, …, outer

Mispredict as taken on last iteration of Mispredict as taken on last iteration of 
inner loop
Then mispredict as not taken on first
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 Then mispredict as not taken on first 
iteration of inner loop next time around



2 Bit Predictor2-Bit Predictor

Only change prediction on two Only change prediction on two 
successive mispredictions
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Calculating the Branch 
TargetTarget

Even with predictor still need to Even with predictor, still need to 
calculate the target address

1 le pen lt fo t ken b n h 1-cycle penalty for a taken branch

 Branch target buffer
 Cache of target addresses
 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, 
can fetch target immediately
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Exceptions and InterruptsExceptions and Interrupts

 “Unexpected” events requiring change Unexpected  events requiring change
in flow of control
 Different ISAs use the terms differently Different ISAs use the terms differently

 Exception
 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt
 From an external I/O controller

 Dealing with them without sacrificing 

192

performance is hard



Handling ExceptionsHandling Exceptions

 In MIPS exceptions managed by a System In MIPS, exceptions managed by a System 
Control Coprocessor (CP0)

 Save PC of offending (or interrupted) g ( p )
instruction
 In MIPS: Exception Program Counter (EPC)

S i di ti f th bl Save indication of the problem
 In MIPS: Cause register
 We’ll assume 1-bit We ll assume 1 bit

 0 for undefined opcode, 1 for overflow

 Jump to handler at 8000 00180
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An Alternate MechanismAn Alternate Mechanism

 Vectored Interrupts Vectored Interrupts
 Handler address determined by the cause

 Example: Example:
 Undefined opcode: C000 0000
 Overflow: C000 0020 Overflow: C000 0020
 …: C000 0040

 Instructions either Instructions either
 Deal with the interrupt, or
 Jump to real handler (ISR)
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 Jump to real handler (ISR)



Handler ActionsHandler Actions

 Read cause and transfer to relevant Read cause, and transfer to relevant 
handler

 Determine action required Determine action required
 If restartable

Take corrective action Take corrective action
 use EPC to return to program
Otherwise Otherwise
 Terminate program

Report error using EPC cause
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 Report error using EPC, cause, …



Exceptions in a PipelineExceptions in a Pipeline

 Another form of control hazard Another form of control hazard
 Consider overflow on add in EX stage

add $1  $2  $1add $1, $2, $1

 Prevent $1 from being clobbered
 Complete previous instructions Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values Set Cause and EPC register values
 Transfer control to handler

 Similar to mispredicted branch
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 Similar to mispredicted branch
 Use much of the same hardware



Pipeline with ExceptionsPipeline with Exceptions
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Exception PropertiesException Properties

Restartable exceptions Restartable exceptions
 Pipeline can flush the instruction

H dl t th t t th Handler executes, then returns to the 
instruction

Refetched and executed from scratch Refetched and executed from scratch

 PC saved in EPC register
Id tifi i i t ti Identifies causing instruction

 Actually PC + 4 is saved
H dl t dj t
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 Handler must adjust



Exception ExampleException Example

 Exception on add in Exception on add in
40 sub  $11, $2, $4
44 and  $12, $2, $5
48 or   $13  $2  $648 or   $13, $2, $6
4C add  $1,  $2, $1
50 slt  $15, $6, $7
54 lw   $16  50($7)54 lw   $16, 50($7)
…

 Handler
80000180 sw   $25, 1000($0)
80000184 sw   $26, 1004($0)
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Exception ExampleException Example
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Exception ExampleException Example
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Multiple ExceptionsMultiple Exceptions

 Pipelining overlaps multiple instructions Pipelining overlaps multiple instructions
 Could have multiple exceptions at once

 Simple approach: deal with exception from Simple approach: deal with exception from 
earliest instruction
 Flush subsequent instructionsq
 “Precise” exceptions

 In complex pipelinesp p p
 Multiple instructions issued per cycle
 Out-of-order completion
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 Maintaining precise exceptions is difficult!



Imprecise ExceptionsImprecise Exceptions

 Just stop pipeline and save state Just stop pipeline and save state
 Including exception cause(s)

 Let the handler work out Let the handler work out
 Which instruction(s) had exceptions
 Which to complete or flushc to co p ete o us

 May require “manual” completion

 Simplifies hardware, but more complex 
handler software

 Not feasible for complex multiple-issue
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Instr ction Le el Parallelism (ILP)Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in Pipelining: executing multiple instructions in 
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle
Multiple issue Multiple issue
 Replicate pipeline stages  multiple pipelines
 Start multiple instructions per clock cycle

CPI 1 I t ti P C l (IPC) CPI < 1, so use Instructions Per Cycle (IPC)
 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4
B t d d i d thi i ti
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Multiple IssueMultiple Issue

 Static multiple issue Static multiple issue
 Compiler groups instructions to be issued together
 Packages them into “issue slots” Packages them into issue slots
 Compiler detects and avoids hazards

 Dynamic multiple issuey p
 CPU examines instruction stream and chooses 

instructions to issue each cycle
 Compiler can help by reordering instructions
 CPU resolves hazards using advanced techniques 

at runtime
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at runtime



SpeculationSpeculation

 “Guess” what to do with an instruction Guess  what to do with an instruction
 Start operation as soon as possible
 Check whether guess was right Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue
 Examples

 Speculate on branch outcome
 Roll back if path taken is different

 Speculate on load
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 Speculate on load
 Roll back if location is updated



Compiler/Hardware 
SpeculationSpeculation

Compiler can reorder instructions Compiler can reorder instructions
 e.g., move load before branch

C i l d “fi ” i t ti t Can include “fix-up” instructions to recover 
from incorrect guess

H d l k h d f Hardware can look ahead for 
instructions to execute
 Buffer results until it determines they are 

actually needed
Fl h b ff i t l ti
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 Flush buffers on incorrect speculation



Speculation and ExceptionsSpeculation and Exceptions

 What if exception occurs on a What if exception occurs on a 
speculatively executed instruction?
 e g speculative load before null-pointer e.g., speculative load before null pointer 

check
 Static speculationp

 Can add ISA support for deferring 
exceptions

 Dynamic speculation
 Can buffer exceptions until instruction 

208

completion (which may not occur)



Static Multiple IssueStatic Multiple Issue

Compiler groups instructions into “issue Compiler groups instructions into issue 
packets”

G o p of in t tion th t n be i ed on Group of instructions that can be issued on 
a single cycle
Determined by pipeline resources required Determined by pipeline resources required

 Think of an issue packet as a very long 
i t tiinstruction
 Specifies multiple concurrent operations
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  Very Long Instruction Word (VLIW)



Scheduling Static Multiple IssueScheduling Static Multiple Issue

Compiler must remove some/all hazards Compiler must remove some/all hazards
 Reorder instructions into issue packets

N d d i ith k t No dependencies with a packet
 Possibly some dependencies between 

packetspackets
 Varies between ISAs; compiler must know!

Pad with nop if necessary Pad with nop if necessary
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MIPS with Static Dual IssueMIPS with Static Dual Issue
 Two-issue packets

 One ALU/branch instruction
 One load/store instruction
 64-bit aligned

 ALU/branch, then load/store
 Pad an unused instruction with nop Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB
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n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB



MIPS with Static Dual IssueMIPS with Static Dual Issue
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Hazards in the Dual Issue MIPSHazards in the Dual-Issue MIPS
 More instructions executing in parallel
 EX data hazard

 Forwarding avoided stalls with single-issue
 Now can’t use ALU result in load/store in same 

packet
 add  $t0, $s0, $s1, ,
load $s2, 0($t0)

 Split into two packets, effectively a stall

Load use hazard Load-use hazard
 Still one cycle use latency, but now two 

instructions
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instructions

 More aggressive scheduling required



Scheduling ExampleScheduling Example
 Schedule this for dual-issue MIPS

Loop: lw   $t0, 0($s1)      # $t0=array element
addu $t0, $t0, $s2    # add scalar in $s2, ,
sw   $t0, 0($s1)      # store result
addi $s1, $s1,–4      # decrement pointer
bne  $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw   $t0, 0($s1) 1

ddi $ 1  $ 1 4 2addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4
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 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)



Loop UnrollingLoop Unrolling

Replicate loop body to expose more Replicate loop body to expose more 
parallelism

Red e loop ont ol o e he d Reduces loop-control overhead

 Use different registers per replication
 Called “register renaming”
 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register
 Aka “name dependence”

Reuse of a register name
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 Reuse of a register name



Loop Unrolling ExampleLoop Unrolling Example
ALU/branch Load/store cycley

Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1

nop lw   $t1, 12($s1) 2

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3addu $t0, $t0, $s2 lw   $t2, 8($s1) 3

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5

addu $t3  $t4  $s2 sw   $t1  12($s1) 6addu $t3, $t4, $s2 sw   $t1, 12($s1) 6

nop sw   $t2, 8($s1) 7

bne  $s1, $zero, Loop sw   $t3, 4($s1) 8

 IPC = 14/8 = 1.75
 Closer to 2, but at cost of registers and code size
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Dynamic Multiple IssueDynamic Multiple Issue

“Superscalar” processors Superscalar  processors
 CPU decides whether to issue 0, 1, 2, … 

h leach cycle
 Avoiding structural and data hazards

 Avoids the need for compiler scheduling
 Though it may still help
 Code semantics ensured by the CPU
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Dynamic Pipeline 
SchedulingScheduling

Allow the CPU to execute instructions Allow the CPU to execute instructions 
out of order to avoid stalls

B t ommit e lt to egi te in o de But commit result to registers in order

 Example
lw    $t0, 20($s2)
addu  $t1, $t0, $t2
sub   $s4  $s4  $t3sub   $s4, $s4, $t3
slti  $t5, $s4, 20

Can start sub while addu is waiting for lw
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 Can start sub while addu is waiting for lw



Dynamically Scheduled CPUDynamically Scheduled CPU
Preserves 
dependenciesdependencies

Hold pending 
operands

Results also sent to 
any waiting 
reservation stations

Reorders buffer for 
i t it
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register writes
Can supply 
operands for 
issued instructions



Register RenamingRegister Renaming
 Reservation stations and reorder buffer 

effectively provide register renaming
 On instruction issue to reservation station

If d i il bl i i t fil d If operand is available in register file or reorder 
buffer
 Copied to reservation station
 No longer required in the register; can be overwritten

 If operand is not yet available
 It will be provided to the reservation station by a t be p o ded to t e ese at o stat o by a

function unit
 Register update may not be required
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SpeculationSpeculation

Predict branch and continue issuing Predict branch and continue issuing
 Don’t commit until branch outcome 

determineddetermined

 Load speculation
A id l d d h i d l Avoid load and cache miss delay
 Predict the effective address

Predict loaded value Predict loaded value
 Load before completing outstanding stores
 Bypass stored values to load unit

221

 Bypass stored values to load unit

 Don’t commit load until speculation cleared



Why Do Dynamic 
Scheduling?Scheduling?

Why not just let the compiler schedule Why not just let the compiler schedule 
code?
N t ll t ll di bl Not all stalls are predicable
 e.g., cache misses

 Can’t always schedule around branches
 Branch outcome is dynamically determined

 Different implementations of an ISA 
have different latencies and hazards

222

have different latencies and hazards



Does Multiple Issue Work?Does Multiple Issue Work?

The BIG Picture

 Yes, but not as much as we’d like
P h l d d i th t li it ILP

The BIG Picture

 Programs have real dependencies that limit ILP
 Some dependencies are hard to eliminate

i t li i e.g., pointer aliasing

 Some parallelism is hard to expose
Limited window size during instruction issue Limited window size during instruction issue

 Memory delays and limited bandwidth
Hard to keep pipelines full
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 Hard to keep pipelines full

 Speculation can help if done well



Power EfficiencyPower Efficiency
 Complexity of dynamic scheduling and p y y g

speculations requires power
 Multiple simpler cores may be better Multiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline 

Stages
Issue 
width

Out-of-order/ 
Speculation

Cores Power

i486 1989 25MH 5 1 N 1 5Wi486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Will tt 2001 2000MH 22 3 Y 1 75WP4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Ult S III 2003 1950MH 14 4 N 1 90W
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UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W



The Opteron X4 MicroarchitectureThe Opteron X4 Microarchitecture

72 physical 
registers
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The Opteron X4 Pipeline FlowThe Opteron X4 Pipeline Flow

 For integer operationsg p

 FP is 5 stages longer
 Up to 106 RISC-ops in progress

B ttl k Bottlenecks
 Complex instructions with long dependencies

Branch mispredictions
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 Branch mispredictions
 Memory access delays



FallaciesFallacies

 Pipelining is easy (!) Pipelining is easy (!)
 The basic idea is easy
 The devil is in the details The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology
 So why haven’t we always done pipelining?
 More transistors make more advanced techniques 

f iblfeasible
 Pipeline-related ISA design needs to take account 

of technology trends
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of technology trends
 e.g., predicated instructions



PitfallsPitfalls

Poor ISA design can make pipelining Poor ISA design can make pipelining 
harder

e g omple in t tion et (VAX IA 32) e.g., complex instruction sets (VAX, IA-32)
 Significant overhead to make pipelining work

IA-32 micro-op approach IA-32 micro-op approach

 e.g., complex addressing modes
 Register update side effects memory Register update side effects, memory 

indirection

 e.g., delayed branches
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g , y
 Advanced pipelines have long delay slots



Advanced PipeliningAdvanced Pipelining
 This class has given you the background g y g

you need to learn more!
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Concluding RemarksConcluding Remarks

 ISA influences design of datapath and control ISA influences design of datapath and control
 Datapath and control influence design of ISA

Pipelining improves instruction throughput Pipelining improves instruction throughput
using parallelism
 More instructions completed per second More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control Hazards: structural, data, control
 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism
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Dependencies limit achievable parallelism
 Complexity leads to the power wall


