Chapter 3

Arithmetic for Computers

Anthmetic

- Where we've been: Jied

Anthmetic

- Where we've been: Jic
- Abstractions:
- Instruction Set Architecture
- Assembly Language and Machine Language
- Performance (seconds, cycles, instructions)
- What's up ahead:
- Implementing the Architecture

Arithmetic for Computers

- Operations on integers
- Addition and subtraction
- Multiplication and division
- Dealing with overflow
- Floating-point real numbers
- Representation and operations

Interpretation of Data

- Bits have no inherent meaning
- Interpretation depends on the instructions applied
- Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Numbers

- Of course it gets more complicated: numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Possible Representations

Sign Magnitude:
$000=+0$
$001=+1$
$010=+2$
$011=+3$
$100=-0$
$101=-1$
$110=-2$
$111=-3$

One's Complement
$000=+0$
$001=+1$
$010=+2$
$011=+3$
$100=-3$
$101=-2$
$110=-1$
$111=-0$

Two's Complement
$000=+0$ $001=+1$
$010=+2$
$011=+3$
$100=-4$
$101=-3$
$110=-2$
$111=-1$

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

MIPS

- 32 bit signed numbers:

```
0000 0000 0000 0000 0000 0000 0000 0000 two }=\mp@subsup{0}{\mathrm{ ten}}{
```



```
0111 1111 1111 1111 1111 1111 1111 1110 two = + 2,147,483,646ten , maxint
0111 1111 1111 1111 1111 1111 1111 1111tmo = + 2,147,483,647ten
```



```
1000 0000 0000 0000 0000 0000 0000 0010 two = - 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101 two m - 3 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = - 2ten
1111 1111 1111 1111 1111 1111 1111 1111 two = - 1 1ten
```


Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
- remember: "negate" and "invert" are quite different!

Two's Complement Operations

- Converting n bit numbers into numbers with more than n bits:
- MIPS 16 bit immediate gets converted to 32 bits for arithmetic
- copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & -> & 0000 & 0010 \\
1010 & -> & 1111 & 1010
\end{array}
$$

- "sign extension" (lbu vs. lb)

Integer Addition

- Example: $7+6$

- Overflow if result out of range
- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands
- Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 - $6=7+(-6)$

| $+7:$ | $00000000 \ldots 0000111$ |
| :--- | :--- | :--- | :--- |
| -6: | $11111111 \ldots 11111010$ |
| $+1:$ | $00000000 \ldots 00000001$ |

- Overflow if result out of range
- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from + ve operand
- Overflow if result sign is 1

Detecting Overflow

- Consider the operations A + B, and A B
- Can overflow occur if B is 0 ? lice
- Can overflow occur if A is 0 ? jicd

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
- Use MIPS addu, addui , subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
- Use MIPS add, addi , sub instructions
- On overflow, invoke exception handler
- Save PC in exception program counter (EPC) register
- Jump to predefined handler address
- mi co (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Effects of Overflow

- Don't always want to detect overflow - new MIPS instructions: addu, addiu, subu
note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8 -bit and 16-bit data
- Use 64-bit adder, with partitioned carry chain
- Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
- SIMD (single-instruction, multiple-data)
- Saturating operations
- On overflow, result is largest value that can be represented
- c.f. 2s-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Review: Boolean Algebra \& Gates

- Problem: Consider a logic function with three inputs: A, B, and C .

Output D is true if at least one input

 is trueOutput E is true if exactly two inputs are true

Output F is true only if all three inputs are true

Review: Boolean Algebra \& Gates

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
- we'll just build a 1 bit ALU, and use 32 of them

- Possible Implementation (sum-of-products):

Review: The Multiplexer

- Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!
- Lets build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Dont want to have to go through too many gates
- for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$$
\begin{aligned}
& c_{\text {out }}=a b+a c_{i n}+b c_{i n} \\
& \text { sum }=a \text { xor } b \text { xor } c_{i n}
\end{aligned}
$$

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

Electrical \& Computer Engineering
School of Engineering THE COLLEGE OF NEW JERSEY

What about subtraction (a-b) ?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

Electrical \& Computer Engineering
School of Engineering THE COLLEGE OF NEW JERSEY

Tailoring the AUU to the MIPS

- Need to support the set-on-less-than instruction (sIt)
- remember: slt is an arithmetic instruction
- produces a 1 if rs < rt and 0 otherwise
- use subtraction: (a-b) < 0 implies $\mathrm{a}<\mathrm{b}$
- Need to support test for equality (beq \$t5, \$t6, \$t7)
- use subtraction: $(a-b)=0$ implies $a=b$

Supporting stt

- Can we figure out the idea?

Electrical \& Computer Engineering
School of Engineering THE COLLEGE OF NEW JERSEY

Test for equality

- Notice control lines:

$$
\begin{aligned}
& 000=\text { and } \\
& 001=\text { or } \\
& 010=\text { add } \\
& 110=\text { subtract } \\
& 111=\text { slt }
\end{aligned}
$$

-Note: zero is a 1 when the result is zero!

Conclusion

- We can build an ALU to support the MIPS instruction set
- key idea: use multiplexer to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU

Conclusion

- Important points about hardware
- all of the gates are always working
- the speed of a gate is affected by the number of inputs to the gate
- the speed of a circuit is affected by the number of gates in series
(on the "critical path" or the "deepest level of logic")

Conclusion

- Our primary focus: comprehension, however,
- Clever changes to organization can improve performance
(similar to using better algorithms in software)
- we'll look at two examples for addition and multiplication

Problem: ripple cany adder is slow

- Is a 32 -bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
- two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$
\begin{array}{ll}
c_{1}=b_{0} c_{0}+a_{0} c_{0}+a_{0} b_{0} \\
c_{2}=b_{1} c_{1}+a_{1} c_{1}+a_{1} b_{1} & c_{2}= \\
c_{3}=b_{2} c_{2}+a_{2} c_{2}+a_{2} b_{2} & c_{3}= \\
c_{4}=b_{3} c_{3}+a_{3} c_{3}+a_{3} b_{3} & c_{4}=
\end{array}
$$

Not feasible! Why?

Cany-look-ahead adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry?

$$
g_{i}=a_{i} b_{i}
$$

- When would we propagate the carry?
$p_{i}=a_{i} \oplus b_{i}$
- Did we get rid of the ripple?
$c_{1}=g_{0}+p_{0} c_{0}$
$c_{2}=g_{1}+p_{1} c_{1}$
$\mathrm{C}_{2}=$
$\mathrm{c}_{3}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{c}_{2}$
$\mathrm{C}_{3}=$
$c_{4}=g_{3}+p_{3} c_{3}$
$\mathrm{C}_{4}=$
Feasible! Why?

Use principle to build bigger adders

- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4bit CLA adders
- Better: use the CLA principle again!

Multiplication

- Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Electrical \& Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

Optimized Multiplier

- Perform steps in parallel: add/shift

- One cycle per partial-product addition
- That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders

- Cost/performance tradeoff

- Can be pipelined
- Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
- HI: most-significant 32 bits
- LO: least-significant 32-bits
- Instructions
- milt rs, rt / milturs, rt
- 64-bit product in HI/LO
- mf hi rd / mflord
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mal rd, rs, rt
- Least-significant 32 bits of product -> rd

Division

n-bit operands yield n-bit quotient and remainder

- Check for 0 divisor
- Long division approach
- If divisor \leq dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit
- Restoring division
- Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
- Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
- Still require multiple steps

MIPS Division

- Use HI/LO registers for result
- HI: 32-bit remainder
- LO: 32-bit quotient
- Instructions
- div rs, rt / divurs, rt
- No overflow or divide-by-0 checking
- Software must perform checks if required
- Use mi hi , mf l o to access result

Foating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Like scientific notation

$$
\begin{aligned}
& =-2.34 \times 10^{56} \\
& =+0.002 \times 10^{-4} \\
& =+987.02 \times 10^{9}
\end{aligned}
$$

- In binary
$- \pm 1 . x x x x x x x_{2} \times 2 y y y$
- Types float and doubl e in C

Foating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
- Portability issues for scientific code
- Now almost universally adopted
- Two representations
- Single precision (32-bit)
- Double precision (64-bit)

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

IEEE Roating-Point Format

single: 8 bits double: 11 bits	single: 23 bits double: 52 bits	
S	Exponent	Fraction

$$
x=(-1)^{s} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) }}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1023

Single-Prec ision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: $000 . . .00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2+127 \approx \pm 3.4 \times 10^{+38}$

Double-Prec ision Range

- Exponents 0000... 00 and 1111... 11 reserved
- Smallest value
- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000 ... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Roating-Point Prec ision

- Relative precision
- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2^{-52}
- Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Roating-Point Example

- Represent -0.75
- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- $\mathrm{S}=1$
- Fraction $=1000 . . .00_{2}$
- Exponent = $-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$
- Single: 1011111101000...00
- Double: 1011111111101000... 00

Roating-Point Example

- What number is represented by the single-precision float 11000000101000... 00
- $\mathrm{S}=1$
- Fraction $=01000 \ldots . .00_{2}$
- Fxponent $=10000001_{2}=129$
$\square \mathrm{x}=(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)}$
$=(-1) \times 1.25 \times 2^{2}$
$=-5.0$

Foating Point Complexities

- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number"
- other complexities

Foating Point Complexities

- Implementing the standard can be tricky
- Not using the standard can be even worse
- see text for description of 80×86 and Pentium bug!

Foating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"

Non Normal Numbers

- Exponent $=000 . .0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{5} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

- Smaller than normal numbers
- allow for gradual underflow, with diminishing precision
- Non Normal with fraction $=000$... 0

$$
x=(-1)^{\mathrm{s}} \times(0+0) \times 2^{\text {-Bias }}= \pm 0.0
$$

Two representations
of 0.0 !

Infinities and NaNs

- Exponent = 111...1, Fraction = 000... 0
- \pm Infinity
- Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction $=000 . . .0$
- Not-a-Number (NaN)
- Indicates illegal or undefined result
- e.g., 0.0 / 0.0
- Can be used in subsequent calculations

Foating-Point Addition

- Consider a 4-digit decimal example
- $9.999 \times 10^{1}+1.610 \times 10^{-1}$
- 1. Align decimal points
- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$
- 2. Add significands
- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$
- 3. Normalize result \& check for over/underflow
- 1.0015×10^{2}
- 4. Round and renormalize if necessary
- 1.002×10^{2}

Foating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$
- 1. Align binary points
- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$
- 2. Add significands
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
- 3. Normalize result \& check for over/underflow
- $1.000_{2} \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

PP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
- Much longer than integer operations
- Slower clock would penalize all instructions
- FP adder usually takes several cycles
- Can be pipelined

FP Adder Hardware

Roating-Point Multiplic ation

- Consider a 4-digit decimal example
- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$
- 2. Multiply significands
- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result \& check for over/underflow
- 1.0212×10^{6}
- 4. Round and renormalize if necessary
- 1.021×10^{6}
- 5. Determine sign of result from signs of operands
- $+1.021 \times 10^{6}$

Roating-Point Multiplic ation

- Now consider a 4-digit binary example
- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$
- 1. Add exponents
- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$
- 2. Multiply significands
- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$
- 3. Normalize result \& check for over/underflow
- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
- $1.110_{2} \times 2^{-3}$ (no change)
- 5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$
- $-1.110_{2} \times 2^{-3}=-0.21875$

PP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
- But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion
- Operations usually takes several cycles
- Can be pipelined

PP Instructions in MIPS

- FP hardware is coprocessor 1
- Adjunct processor that extends the ISA
- Separate FP registers
- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- Release 2 of MIPs ISA supports 32×64-bit FP reg's
- FP instructions operate only on FP registers
- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact
- FP load and store instructions
- I we 1, I de1, swe1, sdc1
- e.g., I dcl \$f 8, 32(\$sp)

PP Instructions in MIPS

- Single-precision arithmetic
- add. s, sub. s, mil . s, div.s
- e.g., add. s \$fo, \$f1, \$f 6
- Double-precision arithmetic
- add. d, sub. d, mul . d, di v. d
- e.g., mil . d \$f 4, \$f 4, \$f 6
- Single- and double-precision comparison
- c. $x x .5, c . x x$ d ($x x$ is eq, $1 \mathrm{t}, \mathrm{I}$ e, ...)
- Sets or clears FP condition-code bit
- e.g. c. 1 t. s \$f 3, \$f 4
- Branch on FP condition code true or false
- bclt, bclf
- e.g., bcit Target Label

PP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

- C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: I wcl $f 16, const5($gp)
    I we2 $f 18, const 9($gp)
    di v.s $f 16, $f 16, $f 18
    l wel $f18, const32($gp)
    sub.s $f 18, $f 12, $f 18
    mul.s $f0, $f 16, $f 18
    j r $ra Electrical & Computer Engineering

\section*{P Example: Array Multiplication}
- \(X=X+Y \times Z\)
- All \(32 \times 32\) matrices, 64-bit double-precision elements
- C code:
voi d mm (double \(\times[\) ][], double \(y[][]\), double \(e[][])\) \{
i nt i, j, k;
for ( \(\mathrm{i}=0\); \(\mathbf{i}!=32 ; \mathrm{i}=\mathbf{i}+1\) )
for ( \(\mathrm{j}=\mathrm{O} ; \mathrm{j}!=32 ; \mathrm{j}=\mathrm{j}+1\) ) for \((k=O ; k!=32 ; k=k+1)\) \(\times[\mathbf{i}][\mathbf{j}]=\times[\mathbf{i}][\mathbf{j}]\)
\(+y[i][k] * z[k][j] ;\)
\}
- Addresses of \(x, y, z\) in \(\$ a 0, \$ a 1, \$ a 2\), and \(\mathrm{i}, \mathrm{j}, \mathrm{k}\) in \$s0, \$s1, \$s2

\section*{FP Example: Array Multiplication}
- MIPS code:


\section*{PP Example: Array Multiplication}


\section*{Assoc iativity}
- Parallel programs may interleave operations in unexpected orders
- Assumptions of associativity may fail
\begin{tabular}{|r|r|r|r|}
\hline & & \((x+y)+z\) & \(x+(y+z)\) \\
\hline\(x\) & \(-1.50 \mathrm{E}+38\) & & \(-1.50 \mathrm{E}+38\) \\
\(y\) & \(1.50 \mathrm{E}+38\) & \(0.00 \mathrm{E}+00\) & \\
\(z\) & 1.0 & 1.0 & \(1.50 \mathrm{E}+38\) \\
\hline & & \(1.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) \\
\hline
\end{tabular}
- Need to validate parallel programs under varying degrees of parallelism

\section*{x86 PP Architecture}
- Originally based on 8087 FP coprocessor
- \(8 \times 80\)-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
- Result: poor FP performance

\section*{x86 PP Instructions}
\begin{tabular}{|c|c|c|c|}
\hline Data transfer & Arithmetic & Compare & Transcendental \\
\hline FILD memx ST( i ) & FIADDP menx ST( i ) & FI COMP & FPATAN \\
\hline FISTP memx ST(i) & FISUBRP menx ST(i) & FI UCOMP & F2XM \\
\hline FLDPI & FIM MLP menx ST(i) & FSTSW AX/ men & FCOS \\
\hline FLD1 & FID VRP menx ST(i) & & FPTAN \\
\hline \multirow[t]{3}{*}{FLDZ} & FSQRT & & FPREM \\
\hline & FABS & & FPSI N \\
\hline & FRNDI NT & & FYL2X \\
\hline
\end{tabular}
- Optional variations
- । : integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

\section*{Streaming SIMD Extension 2 (SSE2)}
- Adds \(4 \times 128\)-bit registers
- Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
- \(2 \times 64\)-bit double precision
- \(4 \times 32\)-bit double precision
- Instructions operate on them simultaneously
- Single-Instruction Multiple-Data

\section*{Right Shift and Division}
- Left shift by iplaces multiplies an integer by \(2^{i}\)
- Right shift divides by 2?
- Only for unsigned integers
- For signed integers
- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- \(11111011_{2} \gg 2=11111110_{2}=-2\)
- Rounds toward \(-\infty\)
- c.f. \(11111011_{2} \ggg 2=00111110_{2}=+62\)

\section*{Who Cares About PP Acc uracy?}
- Important for scientific code
- But for everyday consumer use?
. "My bank balance is out by \(0.0002 \phi!"\) :
- The Intel Pentium FDIV bug
- The market expects accuracy
- See Colwell, The Pentium Chronicles

\section*{Concluding Remarks}
- ISAs support arithmetic
- Signed and unsigned integers
- Floating-point approximation to reals
- Bounded range and precision
- Operations can overflow and underflow
- MIPS ISA
- Core instructions: 54 most frequently used
- 100\% of SPECINT, \(97 \%\) of SPECFP
- Other instructions: less frequent

\section*{ChapterThree Summary}
- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
- two's complement
- IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns

\section*{Chapter Three Summary}
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).
- Algorithm choice is important and may lead to hardware optimizations for both space and time (e.g., multiplication)

\section*{Chapter Three Summary}
- We are ready to move on

\section*{You may want to look back (Section 3.10 is great reading!)}```

