
Chapter 3

Arithmetic for Computers

Arithmetice c

 Where we've been: Where we ve been:

2

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Arithmetice c

 Where we've been: Where we ve been:
 Abstractions:

 Instruction Set Architecture
 Assembly Language and Machine

Language

 Performance (seconds, cycles, operation

instructions)

 What's up ahead:
32

a

ALU
 Implementing the Architecture

32

result

b

3

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

32

Arithmetic for ComputersArithmetic for Computers

Operations on integers Operations on integers
 Addition and subtraction

M lti li ti d di i i Multiplication and division
 Dealing with overflow

 Floating-point real numbers
 Representation and operations

4

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Interpretation of DataInterpretation of Data

 Bits have no inherent meaning
 Interpretation depends on the instructions

applied

 Computer representations of numbers
 Finite range and precisiong
 Need to account for this in programs

5

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Numbers

 Of course it gets more complicated:

u be s

 Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can

add a negative number)
 How do we represent negative numbers?

i hi h bi illi.e., which bit patterns will represent
which numbers?

6

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Possible Representations

 Sign Magnitude: One's Complement Two's Complement

oss b e ep ese a o s

 Sign Magnitude: One s Complement Two s Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2010 +2 010 +2 010 +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

 Issues: balance, number of zeros, ease of operations
 Which one is best? Why?

7

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS

 32 bit signed numbers:

S

g

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten

maxint

minint1000 0000 0000 0000 0000 0000 0000 0001two 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

8

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Two's Complement Operations

N ti t ' l t b

p p

 Negating a two's complement number:
invert all bits and add 1

 remember: “negate” and “invert” are quite
different!different!

9

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Two's Complement Operations

 Converting n bit numbers into numbers with more

p p

 Converting n bit numbers into numbers with more
than n bits:

MIPS 16 bit immediate gets converted to 32 bits for MIPS 16 bit immediate gets converted to 32 bits for
arithmetic

 copy the most significant bit (the sign bit) into the other bitspy g (g)
0010 -> 0000 0010

1010 -> 1111 1010

 "sign extension" (lbu vs. lb)

10

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Integer AdditionInteger Addition
 Example: 7 + 6

 Overflow if result out of range Overflow if result out of range
 Adding +ve and –ve operands, no overflow
 Adding two +ve operands Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Overflow if result sign is 0

Integer SubtractionInteger Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand Subtracting +ve from ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

12

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Overflow if result sign is 1

Detecting Overflow

Consider the operations A + B and A

e ec g O e o

 Consider the operations A + B, and A –
B

Can o e flo occ if B is 0 ? Can overflow occur if B is 0 ?
 Can overflow occur if A is 0 ?

13

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Dealing with OverflowDealing with Overflow

 Some languages (e g C) ignore overflow Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e g Ada Fortran) require Other languages (e.g., Ada, Fortran) require
raising an exception
 Use MIPS add addi sub instructions Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler

 Save PC in exception program counter (EPC) registerp p g () g
 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can

retrieve EPC value to return after corrective action

14

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

retrieve EPC value, to return after corrective action

Effects of Overflow

Don't always want to detect overflow

ec s o O e o

 Don t always want to detect overflow
— new MIPS instructions: addu,

addiu subuaddiu, subu

note: addiu still sign extends!note: addiu still sign-extends!
note: sltu, sltiu for unsigned

comparisonscomparisons

15

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Arithmetic for MultimediaArithmetic for Multimedia

 Graphics and media processing operates on vectors Graphics and media processing operates on vectors
of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain Use 64 bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest value that can be represented

f 2 l d l h c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

16

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Review: Boolean Algebra & Gates

Problem: Consider a logic function with

g

 Problem: Consider a logic function with
three inputs: A, B, and C.

Output D is true if at least one input
is trueis true

Output E is true if exactly two inputs
are trueare true

Output F is true only if all three
inputs are true

17

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

inputs are true

Review: Boolean Algebra & Gates

Show the truth table for these three

g

 Show the truth table for these three
functions.

 Show the Boolean equations for these
th f tithree functions.

 Show an implementation consisting of
inverters, AND, and OR gates.

18

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

An ALU (arithmetic logic unit)

 Let's build an ALU to support the andi and ori

(g)

pp
instructions
 we'll just build a 1 bit ALU, and use 32 of them

a

operation

result

op a b res

b

 Possible Implementation (sum-of-products):

19

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Review: The Multiplexer

 Selects one of the inputs to be the output based on

e e : e u p e e

 Selects one of the inputs to be the output, based on
a control input

S

C
A
B

0

1

note: we call this a 2-input mux
even though it has 3 inputs!

1

 Lets build our ALU using a MUX:

20

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Different Implementations

 Not easy to decide the “best” way to build something

e e p e e a o s

y y g
 Don't want too many inputs to a single gate
 Dont want to have to go through too many gates
 for our purposes, ease of comprehension is important

 Let's look at a 1-bit ALU for addition:

CarryIn

cout = a b + a cin + b cin
sum = a xor b xor cin

Sum

a

b

 How could we build a 1-bit ALU for add, and, and or?
H ld b ild 32 bit ALU?

CarryOut

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 How could we build a 32-bit ALU?

Building a 32 bit ALUu d g a 3 b U
CarryIn

0

Operation

C I

Operation
CarryIn

Result0
a0

b0

Result1
a1

ALU0

CarryIn

CarryOut

CarryIn

0

2

Result

a

1

Result1
b1

Result2
a2

b2

ALU1

CarryOut

ALU2

CarryIn

b

CarryOut

b2
CarryOut

Result31
a31

b31 ALU31

CarryIn

22

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

What about subtraction (a – b) ?

Two's complement approach: just

()

 Two s complement approach: just
negate b and add.
H d t ? How do we negate?

 A very clever solution:
O tiBi t

0

Operation

a

1

CarryIn
Binvert

2

Result1

0

1

b

23

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

CarryOut

Tailoring the ALU to the MIPS

Need to support the set on less than

a o g e U o e S

 Need to support the set-on-less-than
instruction (slt)

 remember: slt is an arithmetic instruction

 produces a 1 if rs < rt and 0 otherwise

 use subtraction: (a-b) < 0 implies a < b

 Need to support test for equality (beq $t5 Need to support test for equality (beq $t5,
$t6, $t7)

b (b) 0 l b

24

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 use subtraction: (a-b) = 0 implies a = b

Supporting sltSuppo g s

 Can we figure out the idea?
Operation

a

CarryIn
Binvert

 Can we figure out the idea? 0

Result

a

1

0

1

b 2

3

CarryOut

Less

a.

0

Operation

a

CarryIn
Binvert

3

Result

1

0

1

b 2

L

25

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

3Less

Set

Overflow
detection Overflow

b.

CarryIn OperationBinvert

ALU0 Result0
a0

a1

b0
Less

CarryIn

CarryOut

CarryIn
Result1

0

Result2
a2

b1

b2

ALU1
Less

CarryIn

CarryOut

ALU2
CarryIn

0

CarryIn

Less
CarryOut

Set
a31

0
b31

Result31

Overflow
ALU31
Less

CarryIn

26

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Test for equalityes o equa y

 Notice control lines:
OperationBnegate

 Notice control lines:

000 = and
001 = or

Result0a0

Result1a1

b0 ALU0
Less

CarryIn

CarryOut

CarryIn001 or
010 = add
110 = subtract
111 = slt

Result1

0

Result2a2

b1

b2

Zero

ALU1
Less

y

CarryOut

ALU2
CarryIn

•Note: zero is a 1 when the result is zero!
0 Less

CarryOut

Set
a31

0
b31

Result31

Overflow
ALU31
Less

CarryIn

27

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ConclusionCo c us o

We can build an ALU to support the We can build an ALU to support the
MIPS instruction set
 key idea: use multiplexer to select the

output we want
 we can efficiently perform subtraction

using two’s complement
 we can replicate a 1-bit ALU to produce a

32-bit ALU

28

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ConclusionCo c us o

Important points about hardware Important points about hardware
 all of the gates are always working
 the speed of a gate is affected by the

number of inputs to the gate
 the speed of a circuit is affected by the

number of gates in series
(on the “critical path” or the “deepest

level of logic”)

29

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ConclusionCo c us o

Our primary focus: comprehension Our primary focus: comprehension,
however,
 Clever changes to organization can

improve performance
(similar to using better algorithms in(similar to using better algorithms in

software)
we’ll look at two examples for addition and we ll look at two examples for addition and
multiplication

30

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Problem: ripple carry adder is slow

 Is a 32-bit ALU as fast as a 1-bit ALU?

pp y

 Is a 32 bit ALU as fast as a 1 bit ALU?
 Is there more than one way to do addition?

 two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 =
c3 = b2c2 + a2c2 + a2b2 c3 = 3 2 2 2 2 2 2 3

c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Not feasible! Why?

Carry-look-ahead adder

 An approach in-between our two extremes

Ca y oo a ead adde

 An approach in between our two extremes
 Motivation:

 If we didn't know the value of carry-in, what could we do?
 When would we always generate a carry? g = a b When would we always generate a carry? gi = ai bi
 When would we propagate the carry? pi = ai + bi

 Did we get rid of the ripple?

c1 = g0 + p0c0
c2 = g1 + p1c1 c2 =
c3 = g2 + p2c2 c3 =
c4 = g3 + p3c3 c4 =

F ibl ! Wh ?

32

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Feasible! Why?

Use principle to build bigger addersp p gg

CarryIn

Result0--3

ALU0

CarryIn

C1

P0
G0

pi
gi

a0
b0
a1
b1
a2
b2
a3
b3 Carry-lookahead unit

 Can’t build a 16 bit adder
this way... (too big)
C ld i l f 4

Result4--7

ALU1

CarryIn

C1

P1
G1

pi + 1
gi + 1

ci + 1

a4
b4
a5
b5
a6
b6
a7
b7

 Could use ripple carry of 4-
bit CLA adders
Bette e the CLA

Result8--11

ALU2

CarryIn

C2

P2
G2

ci + 2

pi + 2
gi + 2

b7

a8
b8
a9
b9

a10
b10

 Better: use the CLA
principle again!

Result12--15

ALU3

CarryIn

C3

G2

P3

ci + 3

g

pi + 3

a11
b11

a12
b12
a13
b13
a14

33

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

CarryOut

C4

P3
G3

ci + 4

pi + 3
gi + 3

a14
b14
a15
b15

MultiplicationMultiplication

 Start with long-multiplication approachStart with long multiplication approach

1000
× 1001

multiplicand

multiplier
× 1001

1000
0000
0000
1000
1001000product

Length of product is
the sum of operand
lengths

34

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Multiplication HardwareMultiplication Hardware

Initially 0

35

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y

Optimized MultiplierOptimized Multiplier

Perform steps in parallel: add/shift Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok if frequency of multiplications is low

36

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 That s ok, if frequency of multiplications is low

Faster MultiplierFaster Multiplier
 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined
S l l i li i f d i ll l

37

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Several multiplication performed in parallel

MIPS MultiplicationMIPS Multiplication
 Two 32-bit registers for productg p

 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

38

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Least-significant 32 bits of product –> rd

DivisionDivision
 Check for 0 divisor

ti t
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract1001

quotient

dividend

 Otherwise
 0 bit in quotient, bring down next

dividend bit

1000 1001010
-1000

10
101

divisor

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back

101
1010
-1000

10i d
 Signed division

 Divide using absolute values
 Adjust sign of quotient and

10

n-bit operands yield n-bit
quotient and remainder

remainder

39

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

j g q
remainder as required

quotient and remainder

Division HardwareDivision Hardware
Initially divisor

in left halfin left half

Initially dividend

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Optimized DividerOptimized Divider

 One cycle per partial-remainder subtractiony p p
 Looks a lot like a multiplier!

 Same hardware can be used for both

41

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Faster DivisionFaster Division

Can’t use parallel hardware as in Can t use parallel hardware as in
multiplier

S bt tion i ondition l on ign of Subtraction is conditional on sign of
remainder

Faste di ide s (e g SRT di ision) Faster dividers (e.g. SRT division)
generate multiple quotient bits per step

S ill i l i l Still require multiple steps

42

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS DivisionMIPS Division

Use HI/LO registers for result Use HI/LO registers for result
 HI: 32-bit remainder

LO 32 bit ti t LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

43

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Floating PointFloating Point
 Representation for non-integral numbersp g

 Including very small and very large numbers

 Like scientific notation Like scientific notation
 –2.34 × 1056

 +0 002 × 10–4

normalized

 +0.002 × 10 4

 +987.02 × 109

In binary

not normalized

 In binary
 ±1.xxxxxxx2 × 2yyyy

44

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Types float and double in C

Floating Point StandardFloating Point Standard

Defined by IEEE Std 754 1985 Defined by IEEE Std 754-1985
 Developed in response to divergence of

t tirepresentations
 Portability issues for scientific code

 Now almost universally adopted
 Two representationsp

 Single precision (32-bit)
 Double precision (64-bit)

45

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Double precision (64 bit)

Accurate ArithmeticAccurate Arithmetic

 IEEE Std 754 specifies additional rounding IEEE Std 754 specifies additional rounding
control
 Extra bits of precision (guard, round, sticky)
 Choice of rounding modes
 Allows programmer to fine-tune numerical

behavior of a computationbehavior of a computation
 Not all FP units implement all options

 Most programming languages and FP libraries just p g g g g j
use defaults

 Trade-off between hardware complexity,
performance and market requirements

46

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

performance, and market requirements

IEEE Floating Point FormatIEEE Floating-Point Format
single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

S Exponent Fraction
double: 11 bits double: 52 bits

 S: sign bit (0 non-negative, 1 negative)

Bias)(ExponentS 2Fraction)(11)(x

S: sign bit (0 non negative, 1 negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to represent it
explicitly (hidden bit)p y ()

 Significand is Fraction with the “1.” restored
 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned

47

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Single: Bias = 127; Double: Bias = 1023

Single Precision RangeSingle-Precision Range
 Exponents 00000000 and 11111111 reserved
 Smallest value

 Exponent: 00000001
actual exponent 1 127 126 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0
 ±1 0 × 2–126 ≈ ±1 2 × 10–38 ±1.0 × 2 ≈ ±1.2 × 10

 Largest value
 exponent: 11111110 exponent: 11111110
 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0

48

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Double Precision RangeDouble-Precision Range
 Exponents 0000…00 and 1111…11 reserved
 Smallest value

 Exponent: 00000000001
actual exponent 1 1023 1022 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0
 ±1 0 × 2–1022 ≈ ±2 2 × 10–308 ±1.0 × 2 ≈ ±2.2 × 10

 Largest value
 Exponent: 11111111110 Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0

49

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Floating Point PrecisionFloating-Point Precision

Relative precision Relative precision
 all fraction bits are significant

Si l 2 23 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6
decimal digits of precisiondecimal digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16
decimal digits of precision

50

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Floating Point ExampleFloating-Point Example
 Represent –0.75p

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1
 Fraction = 1000…002

 Exponent = –1 + Bias Exponent 1 + Bias
 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 0111111111022

 Single: 1011111101000…00
 Double: 1011111111101000 00

51

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Double: 1011111111101000…00

Floating Point ExampleFloating-Point Example

 What number is represented by the What number is represented by the
single-precision float
11000000101000 0011000000101000…00
 S = 1
 Fraction = 01000 002 Fraction = 01000…002

 Fxponent = 100000012 = 129
 x = (–1)1 × (1 + 01) × 2(129 – 127) x = (1) × (1 + 012) × 2()

= (–1) × 1.25 × 22

= –5 0

52

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

= 5.0

Floating Point Complexitiesoa g o Co p e es

Accuracy can be a big problem Accuracy can be a big problem
 IEEE 754 keeps two extra bits, guard and

round

 four rounding modesg

 positive divided by zero yields “infinity”

zero divide by zero yields “not a number” zero divide by zero yields “not a number”

 other complexities

53

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Floating Point Complexitiesoa g o Co p e es

Implementing the standard can be Implementing the standard can be
tricky
N t i th t d d b Not using the standard can be even
worse
 see text for description of 80x86 and

Pentium bug!

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Floating Point Complexitiesoa g o Co p e es

Operations are somewhat more Operations are somewhat more
complicated (see text)

 In addition to overflow we can have
“underflow”underflow

55

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non Normal NumbersNon Normal Numbers
 Exponent = 000...0 hidden bit is 0

 Smaller than normal numbers

BiasS 2Fraction)(01)(x

Smaller than normal numbers
 allow for gradual underflow, with

diminishing precisiong p

 Non Normal with fraction = 000...0
BiS

Two representations

0.0 BiasS 20)(01)(x

56

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

of 0.0!

Infinities and NaNsInfinities and NaNs
 Exponent = 111...1, Fraction = 000...0

 ±Infinity
 Can be used in subsequent calculations,

avoiding need for overflow check

 Exponent = 111...1, Fraction ≠ 000...0p ,
 Not-a-Number (NaN)
 Indicates illegal or undefined resultd cates ega o u de ed esu t

 e.g., 0.0 / 0.0

 Can be used in subsequent calculations

57

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

q

Floating Point AdditionFloating-Point Addition
 Consider a 4-digit decimal example

9 999 101 + 1 610 10 1 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

 2. Add significandsg
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for
/ d flover/underflow

 1.0015 × 102

 4 Round and renormalize if necessary

58

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 4. Round and renormalize if necessary
 1.002 × 102

Floating Point AdditionFloating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
 1. Align binary points

Shift number with smaller exponent Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
4

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 1.0002 × 2–4 (no change) = 0.0625

FP Adder HardwareFP Adder Hardware

Much more complex than integer adder Much more complex than integer adder
 Doing it in one clock cycle would take

t ltoo long
 Much longer than integer operations
 Slower clock would penalize all instructions

 FP adder usually takes several cycles
 Can be pipelined

60

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

FP Adder HardwareFP Adder Hardware

Step 1Step 1

Step 2

Step 3

St 4

61

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Step 4

Floating Point MultiplicationFloating-Point Multiplication

 Consider a 4-digit decimal example Consider a 4 digit decimal example
 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
For biased exponents subtract bias from sum For biased exponents, subtract bias from sum

 New exponent = 10 + –5 = 5
 2. Multiply significands

 1.110 × 9.200 = 10.212 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

5 Determine sign of result from signs of operands

62

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 5. Determine sign of result from signs of operands
 +1.021 × 106

Floating Point MultiplicationFloating-Point Multiplication
 Now consider a 4-digit binary example

1 000 2 1 1 110 2 2 (0 5 0 4375) 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)
 1. Add exponents

 Unbiased: –1 + –2 = –3
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 1.1102 × 2–30002 02 0 02

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

4 Round and renormalize if necessary 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve –ve

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 –1.1102 × 2–3 = –0.21875

FP Arithmetic HardwareFP Arithmetic Hardware
 FP multiplier is of similar complexity to

FP adder
 But uses a multiplier for significands

i t d f ddinstead of an adder
 FP arithmetic hardware usually does

Additi bt ti lti li ti Addition, subtraction, multiplication,
division, reciprocal, square-root

 FP integer conversion FP integer conversion
 Operations usually takes several cycles

Can be pipelined

64

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Can be pipelined

FP Instructions in MIPSFP Instructions in MIPS
 FP hardware is coprocessor 1

Adj t th t t d th ISA Adjunct processor that extends the ISA
 Separate FP registers

 32 single-precision: $f0, $f1, … $f31g p $, $, $
 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP

data, or vice versa
More registers with minimal code size impact More registers with minimal code-size impact

 FP load and store instructions
 lwc1, ldc1, swc1, sdc1

65

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

, , ,
 e.g., ldc1 $f8, 32($sp)

FP Instructions in MIPSFP Instructions in MIPS
 Single-precision arithmetic

dd b l di s add.s, sub.s, mul.s, div.s
 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison Single and double precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)
 Sets or clears FP condition-code bit

e g c lt s $f3 $f4 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

66

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 e.g., bc1t TargetLabel

FP Example: °F to °CFP Example: F to C
 C code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));
}}

 fahr in $f12, result in $f0, literals in global memory
space

C il d MIPS d Compiled MIPS code:
f2c: lwc1 $f16, const5($gp)

lwc2 $f18, const9($gp), (gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18

67

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

$, $, $
mul.s $f0, $f16, $f18
jr $ra

FP Example: Array MultiplicationFP Example: Array Multiplication

 X = X + Y × Z X X + Y Z
 All 32 × 32 matrices, 64-bit double-precision elements

 C code:
void mm (double x[][]void mm (double x[][],

double y[][], double z[][]) {
int i, j, k;
for (i = 0; i! = 32; i = i + 1)(; ;)
for (j = 0; j! = 32; j = j + 1)
for (k = 0; k! = 32; k = k + 1)
x[i][j] = x[i][j]

+ y[i][k] * z[k][j];+ y[i][k] * z[k][j];
}

 Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

68

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

, j, $, $, $

FP Example: Array MultiplicationFP Example: Array Multiplication
 MIPS code:

li $t1, 32 # $t1 = 32 (row size/loop end)

li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

2 li $ 2 0 # k 0 3 d f lL2: li $s2, 0 # k = 0; restart 3rd for loop

sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

sll $t2 $t2 3 # $t2 = byte offset of [i][j]sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)L3: sll $t0, $s2, 5 # $t0 k 32 (size of row of z)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

…

FP Example: Array MultiplicationFP Example: Array Multiplication
…

sll $t0, $s0, 5 # $t0 = i*32 (size of row of y), , (y)

addu $t0, $t0, $s2 # $t0 = i*size(row) + k

sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

ddi $ 2 $ 2 1 # $k k 1addiu $s2, $s2, 1 # $k k + 1

bne $s2, $t1, L3 # if (k != 32) go to L3

s.d $f4, 0($t2) # x[i][j] = $f4

addiu $s1 $s1 1 # $j = j + 1addiu $s1, $s1, 1 # $j = j + 1

bne $s1, $t1, L2 # if (j != 32) go to L2

addiu $s0, $s0, 1 # $i = i + 1

bne $s0, $t1, L1 # if (i != 32) go to L1

70

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

$, $, () g

AssociativityAssociativity
 Parallel programs may interleave

ti i t d doperations in unexpected orders
 Assumptions of associativity may fail

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1 50E+38 0 00E+00y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under
varying degrees of parallelism

71

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

varying degrees of parallelism

x86 FP Architecturex86 FP Architecture

 Originally based on 8087 FP coprocessor Originally based on 8087 FP coprocessor
 8 × 80-bit extended-precision registers
 Used as a push-down stack Used as a push down stack
 Registers indexed from TOS: ST(0), ST(1), …

 FP values are 32-bit or 64 in memoryy
 Converted on load/store of memory operand
 Integer operands can also be converted

on load/store

 Very difficult to generate and optimize code

72

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Result: poor FP performance

x86 FP Instructionsx86 FP Instructions

Data transfer Arithmetic Compare TranscendentalData transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOSFLDPI

FLD1

FLDZ

FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FSTSW AX/mem FCOS

FPTAN

FPREM

FPSIN

 Optional variations
I: integer operand

FRNDINT FYL2X

 I: integer operand
 P: pop operand from stack
 R: reverse operand order

73

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 But not all combinations allowed

Streaming SIMD E tension 2 (SSE2)Streaming SIMD Extension 2 (SSE2)

Adds 4 × 128 bit registers Adds 4 × 128-bit registers
 Extended to 8 registers in AMD64/EM64T

C b d f l i l FP d Can be used for multiple FP operands
 2 × 64-bit double precision
 4 × 32-bit double precision
 Instructions operate on them

simultaneously
 Single-Instruction Multiple-Data

74

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Right Shift and DivisionRight Shift and Division
 Left shift by i places multiplies an

i t b 2iinteger by 2i

 Right shift divides by 2i?
 Only for unsigned integers

 For signed integers
 Arithmetic right shift: replicate the sign bit
 e.g., –5 / 4

11111011 2 11111110 2 111110112 >> 2 = 111111102 = –2
 Rounds toward –∞

 c f 11111011 >>> 2 = 00111110 = +62

75

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 c.f. 111110112 >>> 2 = 001111102 = +62

Who Cares About FP Accuracy?Who Cares About FP Accuracy?

Important for scientific code Important for scientific code
 But for everyday consumer use?

“My bank balance is out by 0 0002¢!” “My bank balance is out by 0.0002¢!”

 The Intel Pentium FDIV bug
h k The market expects accuracy

 See Colwell, The Pentium Chronicles

76

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concluding RemarksConcluding Remarks
 ISAs support arithmetic

 Signed and unsigned integers
 Floating-point approximation to reals

 Bounded range and precision
 Operations can overflow and underflow Operations can overflow and underflow

 MIPS ISA
Core instructions: 54 most frequently used Core instructions: 54 most frequently used
 100% of SPECINT, 97% of SPECFP

 Other instructions: less frequent

77

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Other instructions: less frequent

Chapter Three SummaryC ap e ee Su a y

Computer arithmetic is constrained by Computer arithmetic is constrained by
limited precision
Bit tt h i h t i Bit patterns have no inherent meaning
but standards do exist
 two’s complement
 IEEE 754 floating point

 Computer instructions determine
“meaning” of the bit patterns

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Chapter Three SummaryC ap e ee Su a y

Performance and accuracy are Performance and accuracy are
important so there are many
complexities in real machines (i ecomplexities in real machines (i.e.,
algorithms and implementation).
Al ith h i i i t t d Algorithm choice is important and may
lead to hardware optimizations for both
space and time (e.g., multiplication)

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Chapter Three SummaryC ap e ee Su a y

We are ready to move on We are ready to move on

You may want to look back (SectionYou may want to look back (Section
3.10 is great reading!)

80

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

