

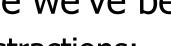
Chapter 3

Arithmetic for Computers

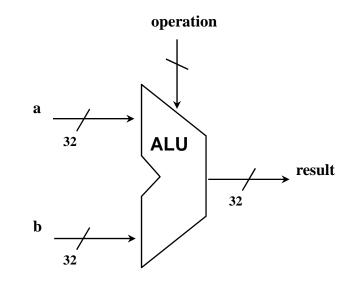
Arithmetic

Arithmetic

Where we've been: jee



- Abstractions:
 - Instruction Set Architecture
 - Assembly Language and Machine Language
- Performance (seconds, cycles, instructions)
- What's up ahead:
 - Implementing the Architecture



Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Interpretation of Data

Bits have no inherent meaning

- Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Numbers

 Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers e.g., no MIPS subi instruction; addi can add a negative number)

How do we represent negative numbers? i.e., which bit patterns will represent which numbers?

Possible Representations

Sign Magnitude:	One's Complement	Two's Complement
000 = +0	000 = +0	000 = +0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = -0	100 = -3	100 = -4
101 = -1	101 = -2	101 = -3
110 = -2	110 = -1	110 = -2
111 = -3	111 = -0	111 = -1

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

32 bit signed numbers:

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!

Two's Complement Operations

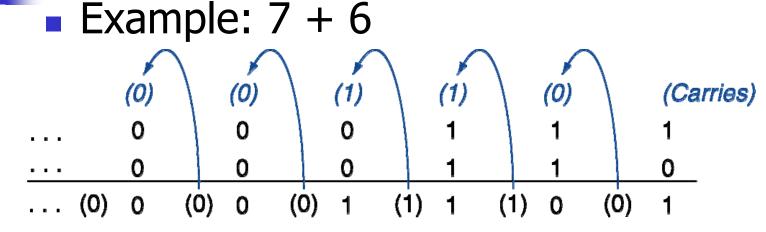
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

"sign extension" (lbu vs. lb)

Integer Addition



- Overflow if result out of range
 - Adding +ve and -ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Detecting Overflow

- Consider the operations A + B, and A B
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi , sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Effects of Overflow

Don't always want to detect overflow

 new MIPS instructions: addu,
 addiu, subu

note: addiu still sign-extends!
note: sltu, sltiu for unsigned
comparisons

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest value that can be represented
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Review: Boolean Algebra & Gates

Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true

Output E is true if exactly two inputs are true

Output F is true only if all three inputs are true

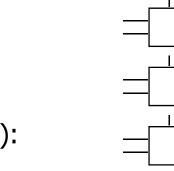
Review: Boolean Algebra & Gates

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.

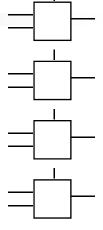
An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them



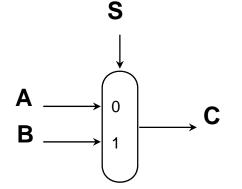


Possible Implementation (sum-of-products):



Review: The Multiplexer

 Selects one of the inputs to be the output, based on a control input

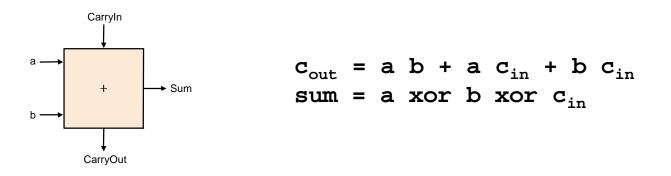


note: we call this a 2-input mux even though it has 3 inputs!

Lets build our ALU using a MUX:

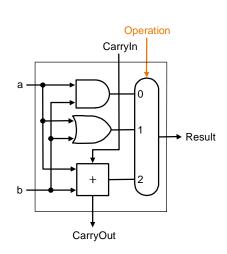
Different Implementations

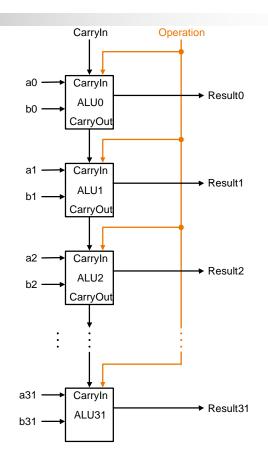
- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Dont want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:



- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

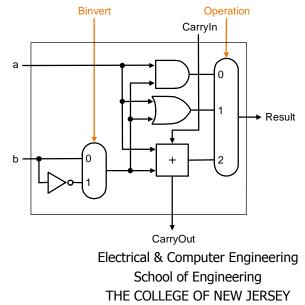




What about subtraction (a – b) ?

Two's complement approach: just negate b and add.

- How do we negate?
- A very clever solution:

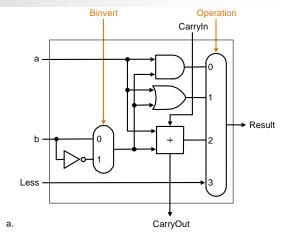


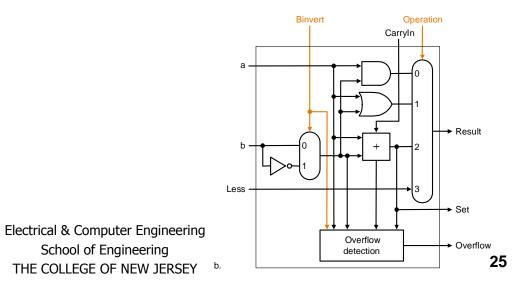
Tailoring the ALU to the MIPS

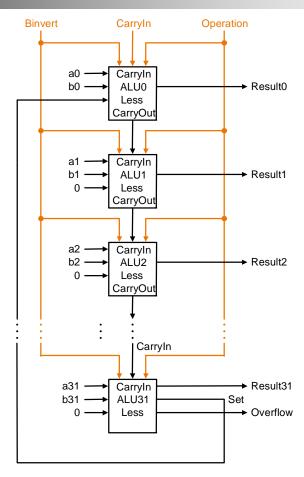
- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise</p>
 - use subtraction: (a-b) < 0 implies a < b</p>
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

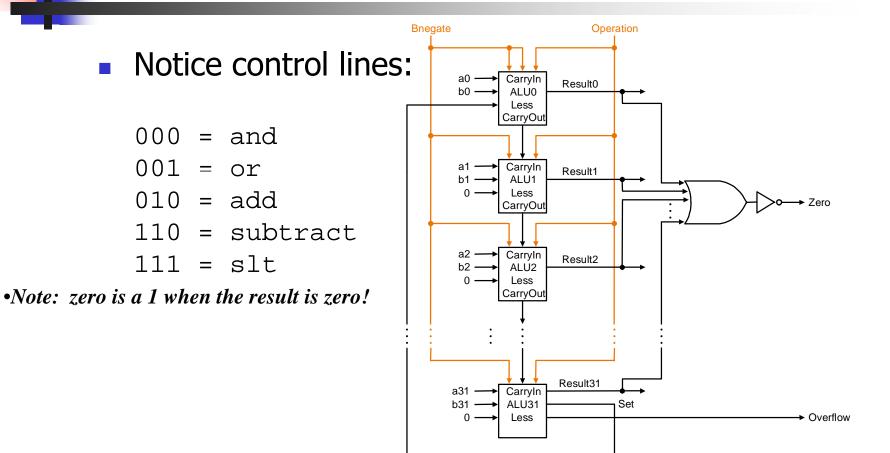
Can we figure out the idea?







Test for equality



Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexer to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU

Conclusion

- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series
 (on the "critical path" or the "deepest level of logic")

Conclusion

- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - we'll look at two examples for addition and multiplication

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1} \qquad c_{2} =$$

$$c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2} \qquad c_{3} =$$

$$c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3} \qquad c_{4} =$$

Not feasible! Why?

Carry-look-ahead adder

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry?
 - When would we propagate the carry?

 $g_i = a_i b_i$ $p_i = a_i + b_i$

Did we get rid of the ripple?

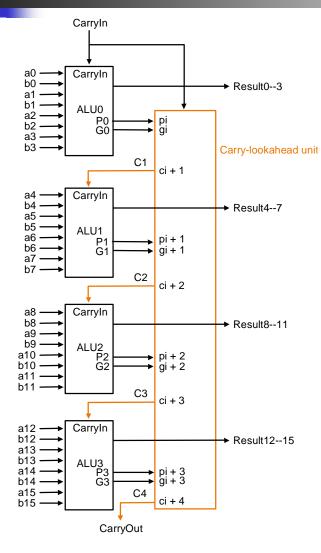
$$c_1 = g_0 + p_0 c_0$$

- $c_2 = g_1 + p_1 c_1 \qquad c_2 =$
- $c_3 = g_2 + p_2 c_2 \qquad c_3 =$

$$c_4 = g_3 + p_3 c_3 \qquad c_4 =$$

Feasible! Why?

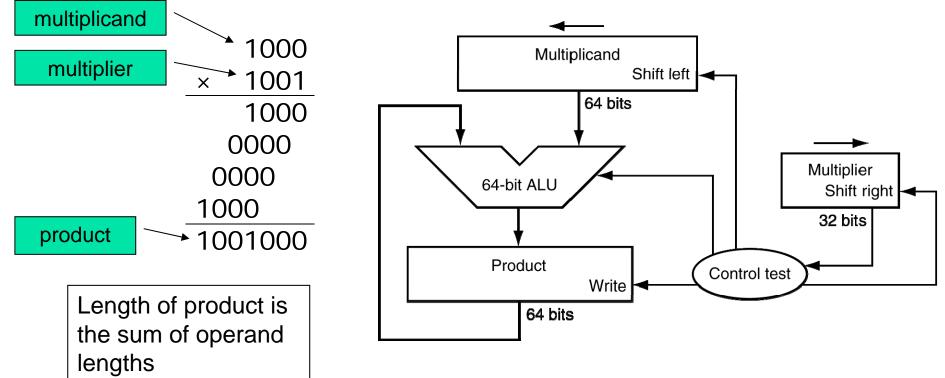
Use principle to build bigger adders



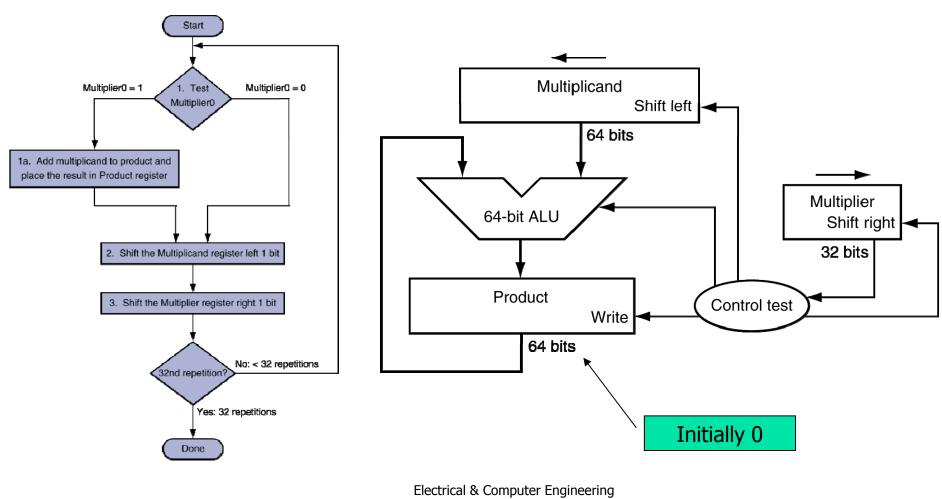
- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4bit CLA adders
- Better: use the CLA principle again!

Multiplication

Start with long-multiplication approach



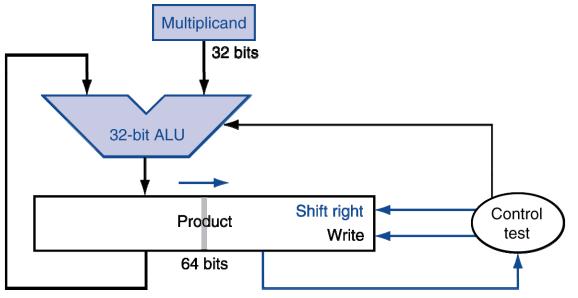
Multiplication Hardware



School of Engineering THE COLLEGE OF NEW JERSEY

Optimized Multiplier

Perform steps in parallel: add/shift

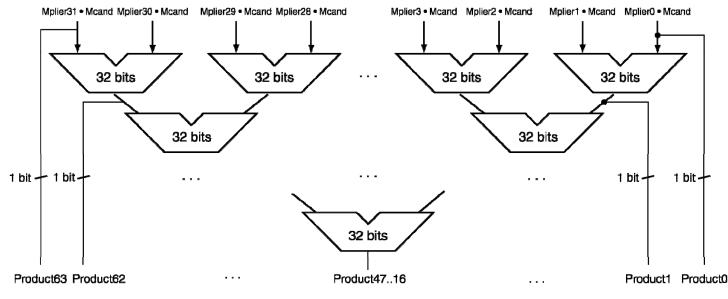


- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff



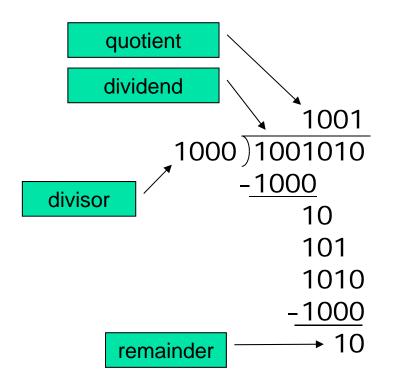
Can be pipelined

Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

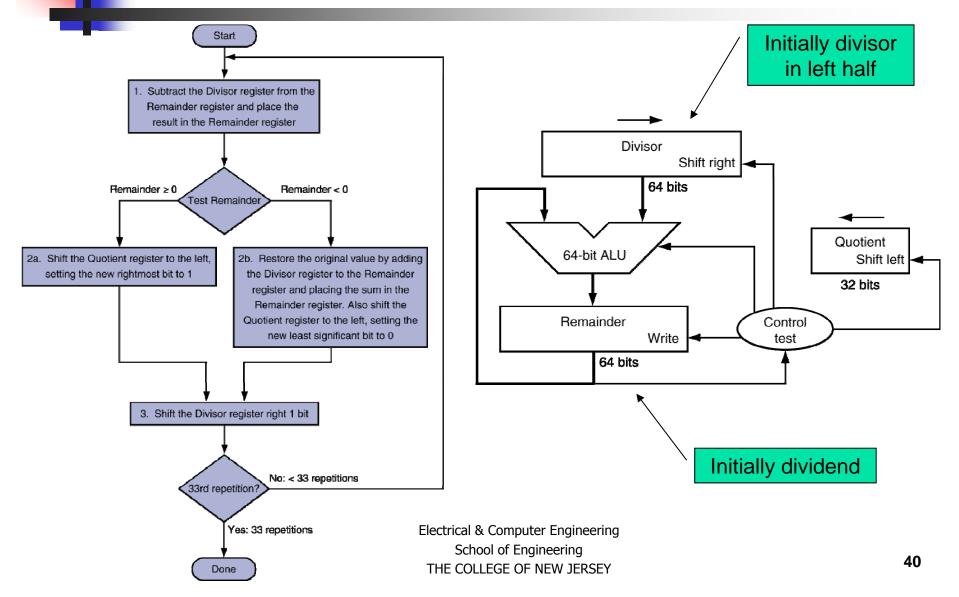
Division



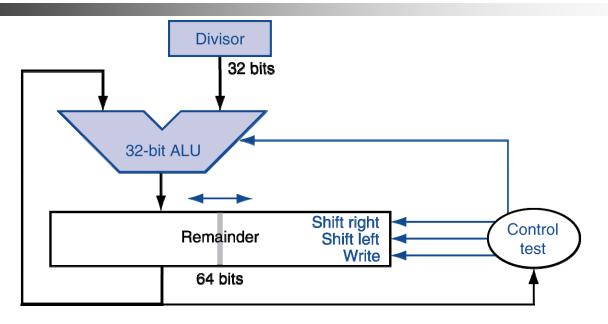
n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware



Optimized Divider



- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi , mfl o to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56} normalized +0.002 × 10⁻⁴ not normalized +987.02 × 10⁹
- In binary
 - $\pm 1.xxxxxx_2 \times 2^{\gamma\gamma\gamma\gamma}$
- Types float and double in C

School of Engineering THE COLLEGE OF NEW JERSEY

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

IEEE Floating-Point Format

	single: 8 bits double: 11 bit	single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: $1.0 \leq |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 \Rightarrow actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{\pm 1023} \approx \pm 1.8 \times 10^{\pm 308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 \times log₁₀2 \approx 23 \times 0.3 \approx 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111110_2$
- Single: 101111110100...00
- Double: 101111111101000...00

Floating-Point Example

- What number is represented by the single-precision float
 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Fxponent = $1000001_2 = 129$
- $X = (-1)^1 \times (1 + 01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ = -5.0

Floating Point Complexities

- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities

Floating Point Complexities

- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

Floating Point Complexities

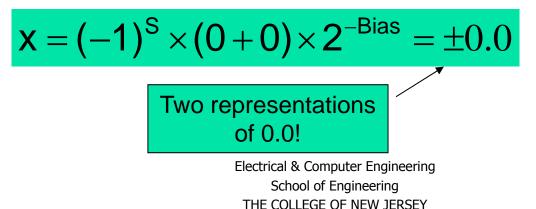
- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"

Non Normal Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

 $x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Non Normal with fraction = 000...0



Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction $\neq 000...0$
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002 × 10²

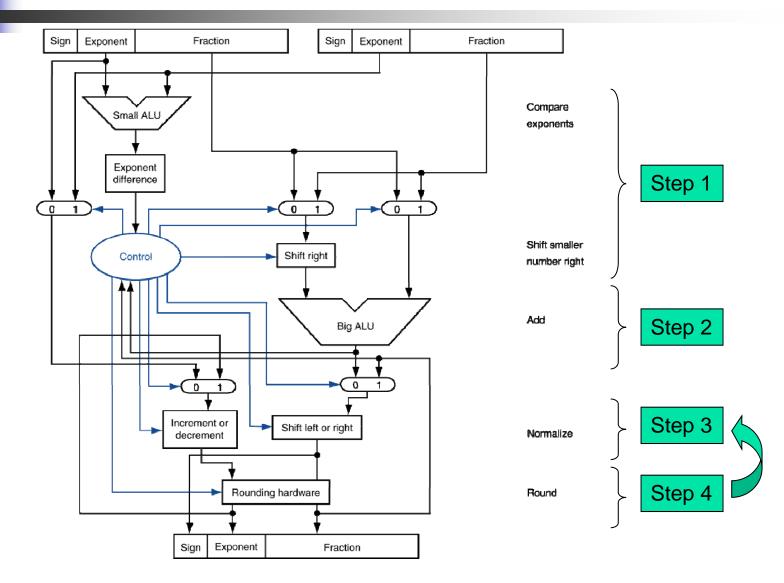
Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware



Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212×10^{6}
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$ Electrical & Computer Engineering School of Engineering

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve \times -ve \Rightarrow -ve
 - -1.110₂ × 2⁻³ = -0.21875

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP \leftrightarrow integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Iwc1, Idc1, swc1, sdc1
 - e.g., I dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.s
 - e.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul. d, di v. d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. *xx*. s, c. *xx*. d (*xx* is eq, It, Ie, ...)
 - Sets or clears FP condition-code bit

• e.g. c. l t. s \$f3, \$f4

- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

- C code:
 - float f2c (float fahr) {
 return ((5.0/9.0)*(fahr 32.0));
 }
 - fahr in \$f12, result in \$f0, literals in global memory space

Compiled MIPS code:

f2c:	wc1	\$f16,	const5(\$gp)	
	wc2		const9(\$gp		
	di v. s	\$f16,	\$f16, \$f18	-	
	wc1	\$f18,	const32(\$g	p)	
	sub. s	\$f18,	\$f12, \$f18		
	mul.s	\$f0,	\$f16, \$f18		
	ir	\$ra	Electrical & Computer Engineerin School of Engineering	ıg	
	J ·	φ. α	THE COLLEGE OF NEW JERSEY		

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements

C code:

FP Example: Array Multiplication

MIPS code:

	l i	\$t1,	32		#	<pre># \$t1 = 32 (row size/loop end)</pre>
	1 i	\$s0,				# i = 0; initialize 1st for loop
L1:	1 i	\$s1,	0			<pre># j = 0; restart 2nd for loop</pre>
L2:	1 i	\$s2,	0			# k = 0; restart 3rd for loop
	sH	\$t2,	\$s0,	5	#	<pre># \$t2 = i * 32 (size of row of x)</pre>
	addu	\$t2,	\$t2,	\$s1	#	# \$t2 = i * size(row) + j
	sH	\$t2,	\$t2,	3	#	<pre># \$t2 = byte offset of [i][j]</pre>
	addu	\$t2,	\$a0,	\$t2	#	<pre># \$t2 = byte address of x[i][j]</pre>
	I.d	\$f4,	0(\$t	2)	#	<pre># \$f4 = 8 bytes of x[i][j]</pre>
L3:	sH	\$t0,	\$s2,	5	#	<pre># \$t0 = k * 32 (size of row of z)</pre>
	addu	\$t0,	\$t0,	\$s1	#	# \$t0 = k * size(row) + j
	sH	\$t0,	\$t0,	3	#	<pre># \$t0 = byte offset of [k][j]</pre>
	addu	\$t0,	\$a2,	\$t0	#	<pre># \$t0 = byte address of z[k][j]</pre>
	I.d	\$f16	, 0(\$	t0)	#	<pre># \$f16 = 8 bytes of z[k][j]</pre>

FP Example: Array Multiplication

...

•••					
sll \$	\$tO, \$	Ss0, 5	5	#	<pre>\$t0 = i *32 (size of row of y)</pre>
addu	\$t0,	\$t0,	\$s2	#	t0 = i * si ze(row) + k
sH	\$t0,	\$t0,	3	#	<pre>\$t0 = byte offset of [i][k]</pre>
addu	\$t0,	\$a1,	\$t0	#	<pre>\$t0 = byte address of y[i][k]</pre>
I.d	\$f18,	0(\$1	t0)	#	<pre>\$f18 = 8 bytes of y[i][k]</pre>
mul.d	\$f16,	\$f18	3, \$f16	#	<pre>\$f16 = y[i][k] * z[k][j]</pre>
add. d	\$ f 4,	\$f4,	\$f16	#	f4=x[i][j] + y[i][k]*z[k][j]
addi u	\$s2,	\$s2,	1	#	\$k k + 1
bne	\$s2,	\$t1,	L3	#	if (k != 32) go to L3
s.d	\$f4,	0(\$t2	2)	#	x[i][j] = \$f4
addi u	\$s1,	\$s1,	1	#	\$j = j + 1
bne	\$s1,	\$t1,	L2	#	if (j != 32) go to L2
addi u	\$s0,	\$s0,	1	#	\$i = i + 1
bne	\$s0,	\$t1,	L1	#	if (i != 32) go to L1

Associativity

Parallel programs may interleave operations in unexpected orders

Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSI N FYL2X

Optional variations

- I : integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - <u>Single-Instruction Multiple-Data</u>

Right Shift and Division

- Left shift by *i* places multiplies an integer by 2ⁱ
- Right shift divides by 2?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - ∎ e.g., −5 / 4
 - $11111011_2 >> 2 = 11111110_2 = -2$
 - Rounds toward —∞
 - c.f. 11111011₂ >>> 2 = 00111110₂ = +62

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗

The Intel Pentium FDIV bug

- The market expects accuracy
- See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Chapter Three Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two's complement
 - IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns

Chapter Three Summary

- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).
- Algorithm choice is important and may lead to hardware optimizations for both space and time (e.g., multiplication)

Chapter Three Summary

We are ready to move on

You may want to look back (Section 3.10 is great reading!)