;I._

Chapter 2

Instructions: Language of the
Computer

ﬁl The College of New Jersey

Instructions:

= Language of the Machine
= More primitive than higher level
languages
e.g., no sophisticated control flow

= Very restrictive
e.g., MIPS Arithmetic Instructions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

Instructions:

= We'll be working with the MIPS
instruction set architecture

= Similar to other architectures developed
since the 1980's

= used by NEC, Nintendo, Silicon Graphics,
Sony

Design goals: maximize performance and
minimize cost, reduce design time

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 3

Millions of processors

1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

Instructions:

[] other

W SPARC

B Hitachi SH
M PowerPC

[] Motorola 68K
M miPs

[1A-32

B ARM

|

1998 1999

2000 2001 2002

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

El\h' [The College of New Jersey

ﬁl The College of New Jersey

Instruction Set

The repertoire of instructions of a computer

Different computers have different instruction
sets

« But with many aspects in common

Early computers had very simple instruction
sets

= Simplified implementation

Many modern computers also have simple
instruction sets

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY >

ﬁl The College of New Jersey

The MIPS Instruction Set

= Used as the example throughout the book

= Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

= Large share of embedded core market

= Applications in consumer electronics,
network/storage equipment, cameras, printers, ...

= Typical of many modern ISAs

= See MIPS Reference Data tear-out card, and
Appendixes B and E

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 6

ﬁl The College of New Jersey

MIPS arithmetic

= All instructions have 3 operands
= Operand order is fixed (destination first)

Example:
C code: A =B + C
MIPS code: add $s0, S$sl1, $s2

(associated with variables by compiler)

"The natural number of operands for an operation like
addition is three...requiring every instruction to have
exactly three operands, no more and no less,

conforms to the philosophy of keeping the hardware
simple”

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 7

ﬁl The College of New Jersey

MIPS arithmetic

= Design Principle: simplicity favors
regularity. Why?
= Of course this complicates some

things...
Ccode:A = B + C + D;
E - Ay
MIPS code: add $t0, $sl1, S$s2
add $s0, $t0, S$s3
sub $s4, S$s5, S$s0

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

MIPS arithmetic

= Operands must be registers, only 32
registers provided

= Design Principle: smaller is faster.
Why?

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 9

ﬁl The College of New Jersey

Arithmetic Operations

= Add and subtract, three operands
= TWO sources and one destination

add a, b, ¢ # a gets b + c
= All arithmetic operations have this form
s Design Principle 1. Simplicity favors
regularity
= Regularity makes implementation simpler

= Simplicity enables higher performance at
|Ower COSt Electrical & Computer Engineering

School of Engineering
THE COLLEGE OF NEW JERSEY 10

ﬁl The College of New Jersey

Registers vs. Memory

= Arithmetic instructions operands must be registers,
— only 32 registers provided

= Compiler associates variables with registers
= What about programs with lots of variables

Control

Datapath

Processor

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 11

Register Operands

Arithmetic instructions use register
operands

MIPS has a 32 x 32-bit register file
= Use for frequently accessed data
= Numbered 0 to 31
= 32-bit data called a “word”
Assembler names
« $t0, $t1, ..., $t9 for temporary values
=« $50, $s1, ..., $s7 for saved variables
Design Principle 2: Smaller is faster
= main memory: millions of locations

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

12

‘
Register Operand Example

= C code:
f=0@+h -G+ 3);
s f, ..., JiNn$S0, ..., $54

= Compiled MIPS code:

add $t0, $s1, $s2
add $tl1l, $s3, $s4
sub $s0, $tO0, $tl1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 13

ﬁl The College of New Jersey

Registers vs. Memory

= Registers are faster to access than memory

= Operating on memory data requires loads
and stores
= More instructions to be executed

= Compiler must use registers for variables as
much as possible

= Only spill to memory for less frequently used
variables

= Register optimization is important!

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 14

= Viewed as a large, single-
dimension array, with an
address.

= A memory address is an index
into the array

= 'Byte addressing” means that
the index points to a byte of
memory.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

o O b WO N B O

ﬁl The College of New Jersey

Memory Organization

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

15

ﬁl The College of New Jersey

Memory Organization

= Bytes are nice, but most data items use

larger "words"
= For MIPS, a word is 32 bits or 4 bytes.

0
4
8
12

32 hits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 16

ﬁl The College of New Jersey

Memory Organization

= 232 bytes with byte addresses from 0 to
232-1

= 239 words with byte addresses 0, 4, 8,
.. 232-4

= Words are aligned
i.e., what are the least 2 significant bits
of a word address? j,e

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 17

ﬁl The College of New Jersey

Memory Operands

= Main memory used for composite data
= Arrays, structures, dynamic data
= To apply arithmetic operations
= Load values from memory into registers
= Store result from register to memory
= Memory is byte addressed
= Each address identifies an 8-bit byte
= Words are aligned in memory
= Address must be a multiple of 4
= MIPS is Big Endian

= Most-significant byte at least address of a word
« Little Endian: least-significant byte at least address

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 18

ﬁl The College of New Jersey

Memory Operand Example 1

= C code:
g =h + A[8];
= gin $s1, hin $s2, base address of A in $s3

= Compiled MIPS code:

= Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1,/ $s2, |$t0

offset base register

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 19

ﬁl The College of New Jersey
i Memory Operand Example 2

= C code:

A[12] = h + A[8];

= hin $s2, base address of A in $s3
= Compiled MIPS code:

= Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $tO

sw $t0, 48(%$s3) # store word

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 20

Immediate Operands

= Constant data specified in an instruction
addi $s3, $s3, 4

= NO subtract immediate instruction

= Just use a negative constant
addi $s2, $s1, -1

n Design Principle 3: Make the common case
fast
= Small constants are common
=« Immediate operand avoids a load instruction

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

21

ﬁl The College of New Jersey

The Constant Zero

= MIPS register 0 ($zero) is the constant
0

= Cannot be overwritten

= Useful for common operations

= E.g., move between registers
add $t2, $sl1l, $zero

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 22

EM‘ | The College of New Jersey

Unsigned Binary Integers

= Range: 0 to +2" -1

= Example

= 0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ..+ 1x23+0x22 +1x21 +1x%x20
=0+..+8+0+2+1=11,,

= Using 32 bits
= 0 to +4,294,967,295

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 23

EM‘ | The College of New Jersey

2s-Complement Signhed Integers

= Range: —2"-1to +2"-1-1

= Example

« 111111111111 11111111 1111 1111 1100,
—1x231 + 1x230 4+ . + 1x22 +0x2! +0x20
—-2,147,483,648 + 2,147,483,644 = —4,,

= Using 32 bits
= —2,147,483,648 to +2,147,483,647

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

24

ﬁl The College of New Jersey

2s-Complement Signed Integers

Bit 31 is sign bit

« 1 for negative numbers

« 0 for non-negative humbers
—(—2"-1) can't be represented

Non-negative numbers have the same unsigned and 2s-
complement representation

Some specific numbers
= 0: 0000 0000 ... 0000
« —1: 11111111 .. 1111
= Most-negative: 1000 0000 ... 0000
= Most-positive: 0111 1111 ... 1111

Negation: Complement and add 1
= Complementmeans1 —-0,0—-1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

25

ﬁl The College of New Jersey

Sign Extension

= Representing a number using more bits
= Preserve the numeric value

= In MIPS instruction set
= addi: extend immediate value
=« Ib, Th: extend loaded byte/halfword
= beq, bne: extend the displacement

= Replicate the sign bit to the left
= C.f. unsigned values: extend with Os

= Examples: 8-bit to 16-bit
= +2: 0000 0010 => 0000 0000 0000 0010
= —2:1111 1110 => 1111 1111 1111 1110

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 26

Instructions

Load and store instructions

ﬁl The College of New Jersey

Example:

C code: A[8] = h + A[8];

MIPS code: 1w $t0, 32 (S$s3)
add $t0, $s2, $tO
sw $St0, 32 (S$s3)

Store word has destination last

Remember arithmetic operands are registers, not

memory!

Can't write: add 48 ($s3),

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

Ss2,

32 ($s3)

27

@ The College of New Jersey

Our First Example

= Can we figure out the code?

swap(int v[], int k);
{ Int temp;
temp = v[K]
vIk] = v[k+1];
v[k+1] = temp;
} swap:
- muli $2, $5, 4
== add $2, $4, $2
Iw $15, 0($2)
Iw $16, 4($2)
sw $16, 0($2)
sw $15, 4(%$2)
jr $31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 28

ﬁl The College of New Jersey

So far we’'ve learned:

= MIPS

- loading words but addressing bytes
- arithmetic on registers only

= Instruction Meaning

add $sl1, S$Ss2, $s3 Ssl = S$s2 + $s3

sub S$sl, $s2, $s3 S$sl = $s2 — S$s3

1w Ssl1, 100($s2) $sl = Memory[S$Ss2+100]
sw $s1, 100(S$s2) Memory[$s2+100] = Ssl

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 29

EM‘ | The College of New Jersey

Machine Language

= Instructions, like registers and words of data, are
also 32 bits long
« Example: add st0, S$sl1, $s2
= registers have numbers, $t0=9, $s1=17, $s2=18

= Instruction Format:

= Can you guess what the field names stand for?

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 30

ﬁl The College of New Jersey

Machine Language

s Consider the load-word and store-word
Instructions,

= What would the regularity principle have us
do?

= New principle: Good design demands a
compromise

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 31

EM‘ | The College of New Jersey

Machine Language

= Introduce a new type of instruction
format

= [-type for data transfer instructions
= other format was R-type for register

= Example: 1w $t0, 32($s2)

= Where's the compromise?

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 32

ﬁl The College of New Jersey

Representing Instructions

= Instructions are encoded in binary
= Called machine code

= MIPS instructions
= Encoded as 32-bit instruction words

= Small number of formats encoding operation code (opcode),
register numbers, ...

= Regularity!
= Register numbers
« $t0 — $t7 are reg’'s 8 — 15
« $t8 — $t9 are reg’s 24 — 25
= $s0 — $s7 are reg’s 16 — 23

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 33

ﬁl The College of New Jersey

MIPS R-format Instructions

op rs rt rd shamt funct
6 bits 5 bits S bits 5 bits 5 bits 6 bits

= Instruction fields
= Op: operation code (opcode)
= IS: first source register number
=« rt: second source register number
» rd: destination register number
= Shamt: shift amount (00000 for now)
» funct: function code (extends opcode)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 34

ﬁl The College of New Jersey

R-format Example

op rs rt rd shamt funct
6 bits 5 bits S bits 5 bits 5 bits 6 bits
add $t0, $s1, $s2
special $s1 $s2 $t0 0 add
0 17 18 8 0 32

000000 | 10001 | 10010 [01000 | OO000 | 100000

00000010001100100100000000100000, = 02324020,

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 35

ﬁl The College of New Jersey

MIPS |-format Instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

= Immediate arithmetic and load/store instructions
= rt: destination or source register number
= Constant: -2 to +21° -1
= Address: offset added to base address in rs

s Design Principle 4: Good design demands good
compromises

= Different formats complicate decoding, but allow 32-bit
instructions uniformly

= Keep formats as similar as possible

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 36

ﬁl The College of New Jersey

Logical Operations

= Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sl
Shift right >> >>> sril
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

= Useful for extracting and inserting
groups of bits in a word

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 37

ﬁl The College of New Jersey

Shift Operations

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

= Shamt: how many positions to shift

= Shift left logical
= Shift left and fill with 0 bits
= S11 by /7bits multiplies by 2/
= Shift right logical
= Shift right and fill with O bits
= srl by /bits divides by 2/ (unsigned only)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 38

ﬁl The College of New Jersey

AND Operations

= Useful to mask bits in a word
= Select some bits, clear others to 0

and $t0, $tl, $t2
$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 0000 0000 0000 0000 0000 1100 0000 0000

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 39

ﬁl The College of New Jersey

OR Operations

= Useful to include bits in a word
= Set some bits to 1, leave others unchanged

or $t0, $tl1, $t2
$t2 | 0000 0000 0000 0000 0000 1101 1100 0000

$t1 | 0000 0000 0000 0000 0041 1100 0000 0000

$t0 | 0000 0000 0000 0000 0011 1101 1100 0000

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 40

ﬁl The College of New Jersey

NOT Operations

= Useful to invert bits in a word
=« ChangeOto1l,and 1to 0

= MIPS has NOR 3-operand instruction
= d NOR b —= NOT (d OR b) Register 0: always

nor $t0, $tl, $zefo [ead’as zero
$t1 [0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 1111 1111 1111 1111 1100 0011 1111 1111

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 41

ﬁl The College of New Jersey

Conditional Operations

= Branch to a labeled instruction if a condition
IS true

= Otherwise, continue sequentially
= beg rs, rt, L1

« if (rs == rt) branch to instruction labeled L1;
= bne rs, rt, L1

« if (rs = rt) branch to instruction labeled L1;
= j L1

= unconditional jump to instruction labeled L1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 42

= C code: 0 =i
if (=
else ¥ = g-h;

... In $s0, $s1, ... s

- Compiled MIPS code: / Assembler calculates addresses

.fl g,

Else:

EX1t: ..

ﬁl The College of New Jersey

Compiling If Statements

Else: i

=J) -F — g+h; f=g+h f=g-h

bne $s3, $s4, Else
add $s0, $s1, $s2
J Ex1t

sub $s0, $s1, $s2

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 43

@I The College of New Jersey
i Compiling Loop Statements

= C code:
while (save[1] == k) 1 += 1;

= 1 in $583, k in $s5, address of save in $s6
= Compiled MIPS code:

Loop: sl1 $t1, $s3, 2
add $tl, $tl, $s6
w $t0, 0($tl)
bne $t0, $s5, Exit
addi $s3, $s3, 1
] Loop

EX1t: ..

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 44

ﬁl The College of New Jersey

Basic Blocks

= A basic block is a sequence of
instructions with

=« No embedded branches (except at end)

= No branch targets (except at beginning)

= A compiler identifies basic
— [blocks for optimization

= An advanced processor
can accelerate execution
of basic blocks

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 45

ﬁl The College of New Jersey

More Conditional
Operations

= Set result to 1 if a condition is true
= Otherwise, setto 0

= SIt rd, rs, rt
» if(rs<rt)rd =1; elserd = 0;

= SIt1 rt, rs, constant
» if (rs < constant) rt = 1; elsert = 0;

= Use in combination with beq, bne

st $t0, $s1, $s2 # if ($sl < $s2)
bne $t0, $zero, L # branch to L

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 46

ﬁl The College of New Jersey

Branch Instruction Design

= Why not blt, bge, etc?
= Hardware for <, >, ... slower than =, #

=« Combining with branch involves more work
per instruction, requiring a slower clock

= All instructions penalized!
= beqg and bne are the common case

= This is a good design compromise

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 47

ﬁl The College of New Jersey

Sighed vs. Unsighed

= Signed comparison: s1t, s1t1
= Unsigned comparison: s1tu, sltu-

= Example
= $s0 = 1111 11111111 1111 1111 1111 1111 1111
= $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
= slt $t0, $s0, $s1 # signed
-1<+1=%$t0=1
= sltu $t0, $s0, $s1 # unsigned
+4,294,967,295 > +1 = $t0 =0

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 48

ﬁl The College of New Jersey

Procedure Calling

= Steps required

Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations
Place result in register for caller
Return to place of call

oAb

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 49

ﬁl The College of New Jersey

Stored Program Computers

"l The BIG Picture

e

Accounting program '
(machine code)

e

Editor program

(machine code)

—_—— e ———————————

C compiler

Processor (machine code)

e

—— —— ——— —— -t 2 2y

————————— —— —— —y

Source code in C
for editor program

T,

Instructions represented in
binary, just like data

Instructions and data
stored in memory

Programs can operate on
programs

= e.g., compilers, linkers, ...
Binary compatibility allows
compiled programs to work
on different computers

= Standardized ISAs

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 50

ﬁl The College of New Jersey

Stored Program Concept

= Fetch & Execute Cycle

= Instructions are fetched and put into a
special register

= Bits in the register "control" the
subsequent actions

= Fetch the “"next” instruction and continue

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 51

@ The College of New Jersey

Control

= Decision making instructions
= alter the control flow,

= i.e., change the "next" instruction to be
executed

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 52

ﬁl The College of New Jersey

Control

= MIPS conditional branch instructions:
bne $t0, $tl, Label

beg $t0, $tl, Label

= Example: if (i==)) h=1i+7;
bne $s0, $sl1, Label
add $s3, $s0, sSsl
Label:

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 53

@ The College of New Jersey

Control

= MIPS unconditional branch instructions:

7 label
= Example:
if (1!=7) beq $s4, $s5, Labl
h=i+7; add $s3, $s4, S$sb5
else J Lab?2
h=i-7; Labl: sub S$s3, $s4, $sb5

Lab2:...

= Can you build a simple for loop?

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 4

ﬁ The College of New Jersey
‘ So far:

Instruction Meaning

add $sl1,$s2,$s3 Ssl = $s2 + $s3

sub $sl1,$s2,$s3 Ssl = $s2 — $s3

1w $s1,100($s2) $sl = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $sl

bne $s4,$s5,Label Next instr. is at Label if $s4 # $s5
beqg $s4,5s5, Label Next instr. 1s at Label 1if $s4 = $s5
7 Label Next 1nstr. 1is at Label

Formats:
Electrical & Computer Engineering

School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

Control Flow

We have: beq, bne, what about Branch-if-less-than?

New instruction:
if Ssl < S$s2 then

St =1
slt $t0, $sl1, $s2 else
$t0 = 0

Can use this instruction to build "o1t $s1, $s2, Label"
— can now build general control structures

Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 56

Policy of Use Conventions

Name |Register number Usage Preserved on call?
Szero 0 the constant value 0 n.a.
Sv0-Svl 2-3 values for results and expression evaluation no
$al0-$a3 4-7 arguments yes
St0-5t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
St8-5t9 24-25 more temporaries no
Sgp 28 global pointer yes
Ssp 29 stack pointer yes
Sfp 30 frame pointer yes
Sra 31 return address yes

Register 1 ($at) reserved for assembler, 26-27 for operating system

ﬁl The College of New Jersey

Memory Layout

= Text: program code

] . $sp—7fff fffcpeyx Stack
= Static data: global variables |
= e.g., static variables in C,
constant arrays and strings t
= $gp initialized to address Sl
allowing xoffsets into this $gp— 1000 8000pex Static data
segment 1000 0000hex Text
= Dynamic data: heap pe—+ 0040 0°°§hex mocorved

= E.g., mallocin C, new in Java
= Stack: automatic storage

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY o8

ﬁl The College of New Jersey

Local Data on the Stack

High address
$fp— $fp—
$sp— $sp—

8P| saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address

a. b.
= Local data allocated by callee
= e.g., C automatic variables

= Procedure frame (activation record)
= Used by some compilers to manage stack storage

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 59

ﬁl The College of New Jersey

Procedure Call Instructions

= Procedure call: jump and link
jal ProcedureLabel
= Address of following instruction put in $ra
= Jumps to target address

= Procedure return: jump register
jr $ra
= Copies $ra to program counter

= Can also be used for computed jumps
e.g., for case/switch statements

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 60

ﬁl The College of New Jersey

Leaf Procedure Example

= C code:
int leaf_example (int g, h, i, j)
{ 1nt T;
f=0@+h -G+ 3);
return f;
}

« Arguments g, ..., jin $a0, ..., $a3
» fin $s0 (hence, need to save $s0 on stack)
= Result in $v0

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 61

= MIPS code:
leaf_example:
addi $sp,
sw $s0,
add $tO0,
add $t1,
sub $s0,
add $vO,
Tw $s0,
addi $sp,

jr

$ra

$sp, -4
0($sp)
$a0, $al
$a2, $a3
$t0, $tl
$s0, $zero
0($sp)
$sp, 4

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

ﬁl The College of New Jersey

Leaf Procedure Example

Save $s0 on stack

Procedure body

Result
Restore $s0

Return

62

ﬁl The College of New Jersey

Non-Leaf Procedures

= Procedures that call other procedures

= For nested call, caller needs to save on
the stack:

= [ts return address

= Any arguments and temporaries needed
after the call

s Restore from the stack after the call

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 63

@ The College of New Jersey

Non-Leaf Procedure Example

s C code:

int fact (int n)
{

1f (n < 1) return f;
else return n * fact(n - 1);

}

= Argument n in $a0
= Result in $v0

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 64

= MIPS code:

fact:

L]1:

addi
sw
sw
s1ti
beq
addi
addi
jr
addi
jal
Tw
Tw
addi
mu 1
jr

$sp,
$ra,
$ao,
$t0,
$t0,
$vO,
$sp,
$ra

$ao0,
fact
$ao,
$ra,
$sp,
$vO,
$ra

W The College of New Jersey

Non-Leaf Procedurd&

Example

$sp, -8
4($sp)
0($sp)
$a0, 1
$zero, L1
$zero, 1
$sp, 8

$a0, -1

0($sp)
4($sp)
$sp, 8
$a0, $vO

H H H R

H HHHHHFHHHH

adjust stack for 2 items
save return address

save argument

test for n < 1

if so, result is 1
pop 2 items from stack
and return
else decrement n
recursive call
restore original n
and return address
pop 2 items from stack
multiply to get result
and return

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

65

ﬁl The College of New Jersey

Character Data

= Byte-encoded character sets

= ASCII: 128 characters
95 graphic, 33 control

»« Latin-1: 256 characters
ASCII, +96 more graphic characters
= Unicode: 32-bit character set
= Used in Java, C++ wide characters, ...
= Most of the world’s alphabets, plus symbols
« UTF-8, UTF-16: variable-length encodings

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 66

ﬁl The College of New Jersey

Byte/Halfword Operations

= Could use bitwise operations

= MIPS byte/halfword load/store
= String processing is @ common case

T1b rt, offset(rs) Th rt, offset(rs)
= Sign extend to 32 bits in rt

Tbu rt, offset(rs) Thu rt, offset(rs)
= Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

= Store just rightmost byte/halfword

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 67

@ The College of New Jersey

String Copy Example

= C code:
= Null-terminated string

void strcpy (char x[], char y[])
{ 1nt 1;

1 = 0;
while ((x[1]=y[1])!="\0")
1 += 1;
}
» Addresses of x, y in $a0, $al
= 1N $SO Electrical & Computer Engineering

School of Engineering
THE COLLEGE OF NEW JERSEY 68

ﬁl The College of New Jersey

String Copy Example

s MIPS code:

strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0
L1: add $tl, $s0O0, $al # addr of y[i] in $tl
Tbu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] ==
addi $s0, $s0O, 1 #1i=1+1
j L1 # next iteration of Tloop
L2: 1w $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 69

ﬁl The College of New Jersey

Constants

= Small constants are used quite frequently
(50% of operands)

eg., A=A+5;
B=B+1;
C=C-18;

= Solutions? Why not?
» put 'typical constants' in memory and load them.

= Create hard-wired registers (like $zero) for
constants like one.

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 70

ﬁl The College of New Jersey

Constants

s MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, 529, 4

= How do we make this work?

= Design Principle: Make the common case

fast. Which format? =

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 71

ﬁl The College of New Jersey

How about larger constants?

= We'd like to be able to load a 32 bit constant into a register

= Must use two instructions, new "load upper immediate" instruction
fur $t0, 1010101010101010

_— filled with zeros

1010101010101010 0000000000000000

= Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

ori

1010101010101010 1010101010101010

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 2

ﬁl The College of New Jersey

Branch Addressing

= Branch instructions specify
= Opcode, two registers, target address

= Most branch targets are near branch
=« Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

= PC-relative addressing
» Target address = PC + offset x 4
» PC already mcremented by 4 by this time

Electrical & Computer Eg

School of Engineering
THE COLLEGE OF NEW JERSEY 3

ﬁl The College of New Jersey

Jump Addressing

= Jump (J and jal) targets could be
anywhere in text segment

= Encode full address in instruction

op address
6 bits 26 bits

= (Pseudo)Direct jump addressing
= Target address = PC;; ,5 : (address x 4)

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 74

ﬁl The College of New Jersey

Branching Far Away

= If branch target is too far to encode
with 16-bit offset, assembler rewrites
the code

= Example
beq $s0,%$s1, L1
l

bne $s0,$s1, L2
j L1

L2:

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 75

o | s |

Immediate

2. Register addressing

Addressing Mode Summary

1. Immediate addressing

op|rs |t | rd|... [unct Registers
I - Register
3. Base addressing
Register @— [Byie] Halfword| Word
I
4, PC-relative addressing
op rs rt Address Memory
PC Word
I
5. Pseudodirect addressing
Op Address Memorv
I
PC @—- Word

@ The College of New Jersey

76

ﬁl The College of New Jersey

Synchronization

= TWO processors sharing an area of memory
= P1 writes, then P2 reads

« Data race if P1 and P2 don't synchronize
Result depends of order of accesses

= Hardware support required
= Atomic read/write memory operation
= No other access to the location allowed between the read
and write
= Could be a single instruction
=« E.qg., atomic swap of register < memory
= Or an atomic pair of instructions

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 77

ﬁl The College of New Jersey

Synchronization in MIPS

= Load linked: 11 rt, offset(rs)

= Store conditional: sc rt, offset(rs)
= Succeeds if location not changed since the 11
Returns 1 in rt

« Fails if location is changed
Returns 0 in rt

= Example: atomic swap (to test/set lock variable)
try: add $t0,%$zero,$s4 ;copy exchange value
11T $t1,0($sD) *Toad Tinked
sc $t0,0($s1) *store conditional
beg $t0,%$zero,try ;branch store fails
add $s4,%$zero,$tl ;put load value in $s4

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 8

@ The College of New Jersey

Translation and Startup

C program

w Many compilers produce
object modules directly

Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

 Linker > Static linking

Executable: Machine language program

Memory

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 9

ﬁl The College of New Jersey

Assembler Pseudoinstructions

= Most assembler instructions represent
machine instructions one-to-one

= Pseudoinstructions: figments of the
assembler’s imagination
move $tO0, $tl — add $t0, $zero, $tl

b1t $t0, $tl, L — sTt $at, $t0, $tl
bne $at, $zero, L

» $at (register 1): assembler temporary

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 80

ﬁl The College of New Jersey

Producing an Object Module

= Assembler (or compiler) translates program into
machine instructions

= Provides information for building a complete program
from the pieces

Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 81

ﬁl The College of New Jersey

Linking Object Modules

= Produces an executable image
1.Merges segments
2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

= Could leave location dependencies for fixing
by a relocating loader
= But with virtual memory, no need to do this

= Program can be loaded into absolute location in
virtual memory space

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 82

ﬁl The College of New Jersey

Loading a Program

= Load from image file on disk into memory
1.Read header to determine segment sizes
2.Create virtual address space

3.Copy text and initialized data into memory
Or set page table entries so they can be faulted in

4.Set up arguments on stack
5.Initialize registers (including $sp, $fp, $gp)

6.Jump to startup routine
Copies arguments to $a0, ... and calls main
When main returns, do exit syscall

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 83

ﬁl The College of New Jersey

Dynamic Linking

= Only link/load library procedure when it
is called
= Requires procedure code to be relocatable

= Avoids image bloat caused by static linking
of all (transitively) referenced libraries

= Automatically picks up new library versions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 84

@ The College of New Jersey

Lazy Linkage

Text Text
[| &
NE=m Ciw
=] s
Indirection table
Data \‘ Data
- o — @
Stub: Loads routine ID,
Jump to linker/loader Text
171D
i [e
Linker/loader code L Text
Dynamic linker/loader
Remap DLL routine
=
Dynamically
mapped COde LData/Text Text |
DLL routine = DLL routine
S = i [oF
a. First call to DLL routine b. Subsequent calls to DLL routine

85

EM‘ | The College of New Jersey

Starting Java Applications

= / -

Class files (Java bytecodes)

Java library routines (machine language)

Just In Time
compiler

Java Virtual Machine ,\
/

Compiled Java methods (machine language) -

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 86

ﬁl The College of New Jersey

C Sort Example

= Illustrates use of assembly instructions for
a C bubble sort function

= Swap procedure (leaf)

void swap(int v[], 1nt k)
{

1nt temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;
}

= vVin $a0, k in $al, temp in $t0

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 87

@ The College of New Jersey

The Procedure Swap

swap: s11 $tl1, $al, 2 # $t1l =k * 4

add $tl1, $a0, $tl # $tl1 = v+(k*4)
(address of v[k])
Tw $t0, 0($tl) # $t0 (temp) = v[k]
Tw $t2, 4($tl) # $t2 = v[k+1]
sw $t2, 0($tl) # vlk] = $t2 (v[k+1]1)
sw $t0, 4($tD) # v[ik+1] = $t0 (temp)
jr $ra # return to calling
routine

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 88

@ The College of New Jersey

The Sort Procedure in C

= Non-leaf (calls swap)
void sort (int v[], 1nt n)
{
int 1, J;
for (1 =0; 1 <n; 1 +=1) {
for (3 =1 - 1;
j >=0&& v[j] > v[] + 1];
J =1 {
swap(v,]j);
}
}

}
=« vin $a0, kin $al, iin $s0, j in $s1

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 89

ﬁl The College of New Jersey

The Procedure Body

move $s2, $a0

save %$a0 into $s2 Move

move $s3, $al save $al into $s3 params
move $s0, $zero i=0

forltst: slt $t0, $s0, $s3 $t0 = 0 if $sO0 > $s3 (i > n) Outer loop
beq $t0, $zero, exitl go to exitl if $sO0 > $s3 (i > n)
addi $s1, $s0, -1 j=1-1

for2tst: slti $t0, $s1, O $t0 = 1 if $s1 < 0 (7 < 0)
bne $t0, $zero, exit2 go to exit2 if $s1 < 0 (j < 0)
s1T $t1, $s1, 2 $tl = j * 4 Inner loop

add $t2, $s2, $tl

Tw $t3, 0(%t2)

Tw $t4, 4($t2)

sTt $t0, $t4, $t3

beq $t0, $zero, exit2
move $a0, $s2

move $al, $sl

$t2 = v + (3 * 4)

= v[]]

$t4 = v[j + 1]

$t0 = 0 if $t4 > $t3

go to exit2 if $t4 > $t3
1st param of swap is v (old $a0) |[pPass
2nd param of swap 1is j params

HOoFH O H oH o oW o H OH OH OH OH H H HHHHEHEHH
&
+
w
[

jal swap call swap procedure & call

addi $s1, $s1, -1 j =1

j for2tst jump to test of inner Toop [0 198
exit2: addi $s0, $s0O, 1 i+=1

. Outer loop

j forltst jump to test of outer Toop

@ The College of New Jersey

The Full Procedure

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $sl1 on stack
sw $s0, 0($sp) # save $s0 on stack
procedure body
exitl: 1w $s0, 0($sp) # restore $sO from stack
Tw $s1, 4($sp) # restore $sl1 from stack
Tw $s2, 8($sp) # restore $s2 from stack
Tw $s3,12($sp) # restore $s3 from stack
Tw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 91

EM‘ | The College of New Jersey

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

3 E Relative Performance 140000 E Instruction count
55 120000

5 100000

80000
1.5
60000
1 40000
O T T T O T T T
none 01 02 03 none 01 02 03

180000 B Clock Cycles 2 BCPI
160000
140000 15
120000
100000 1

80000

60000

40000 0.5

20000

0 T T T O T T T
none 01 02 03 01 02 03

. none .
Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 92

EM‘ | The College of New Jersey

Effect of Language and Algorithm

@ Bubblesort Relative Performance

C/none C/01 C/02 C/03 Java/int

O Quicksort Relative Performance

Java/JIT

2.5

1.5

0.5

3000
2500
2000
1500
1000

500

C/none C/01 C/02 C/03 Java/int

Java/JIT

O Quicksort vs. Bubblesort Speedup

C/none C/01 Cc/02 C/03 Java/int

Java/JIT

93

ﬁl The College of New Jersey

Lessons Learnt

= Instruction count and CPI are not good
performance indicators in isolation

= Compiler optimizations are sensitive to
the algorithm

= Java/JIT compiled code is significantly
faster than JVM interpreted

»« Comparable to optimized C in some cases
= Nothing can fix a dumb algorithm!

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 94

ﬁl The College of New Jersey

Arrays vs. Pointers

= Array indexing involves
= Multiplying index by element size
« Adding to array base address

= Pointers correspond directly to
memory addresses
= Can avoid indexing complexity

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 95

ﬁl The College of New Jersey

Comparison of Array vs. Ptr

= Multiply “strength reduced” to shift

= Array version requires shift to be inside loop
= Part of index calculation for incremented i
= C.f. incrementing pointer

= Compiler can achieve same effect as manual
use of pointers
= Induction variable elimination
= Better to make program clearer and safer

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 96

ﬁl The College of New Jersey

ARM & MIPS Similarities

= ARM: the most popular embedded core
= Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-bit 31 x 32-bit
Input/output Memory Memory

mapped mapped

97

ﬁl The College of New Jersey

Compare and Branch in ARM

= Uses condition codes for result of an
arithmetic/logical instruction
= Negative, zero, carry, overflow
= Compare instructions to set condition
codes without keeping the result

s Each instruction can be conditional

= Top 4 bits of instruction word: condition
value

= Can avoid branches over single instructions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 98

@ The College of New Jersey

Instruction Encoding

a1 28 27 2018 16 15 12 11 43 0
ArM | op | op? | ms* | Rat | opx® | Rs2* |
Register-register 3t 26 25 21 20 16 15 11 10 65 0
MIPS op® Rs1® Rs2® Ad® Const® Opx®
31 28 27 20 18 18 15 12 11 a
ARM opx* op® | Rt Rd* Const"
Data transfar a1 26 25 21 20 18 15 a
MIPS op° Rs1® Ra® Const'®
31 28 27 24 23 a
ARM | Dpx" | Op‘ | Const™
Branch 31 26 25 21 20 16 15 0
MIPS op° Rs1® Opx“/Rs2"® Const™®
at 28 21 24 23 0
ARM Opx* op! Const™
Jump/Call a1 26 25 0
MIPS op° Const®™

O Opcode [Register [0 Constant

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 99

ﬁl The College of New Jersey

Alternative Architectures

= Design alternative:
= provide more powerful operations

= goal is to reduce number of instructions
executed

= danger is a slower cycle time and/or a
higher CPI

—“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler
instructions”

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 100

ﬁl The College of New Jersey

Alternative Architectures

s Sometimes referred to as “"RISC vs. CISC”

= virtually all new instruction sets since 1982 have
been RISC

= VAX: minimize code size, make assembly
language easy

Instructions from 1 to 54 bytes long!

s We'll look at PowerPC and Intel Architecture
(IA)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 101

ﬁl The College of New Jersey

The Intel x86 ISA

= Evolution with backward compatibility

8080 (1974): 8-bit microprocessor
Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080
Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU
Segmented memory mapping and protection

80386 (1985): 32-bit extension (now IA-32)
Additional addressing modes and operations
Paged memory mapping as well as segments

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 102

ﬁl The College of New Jersey

The Intel x86 ISA

= Further evolution...

= 1486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...
= Pentium (1993): superscalar, 64-bit datapath
Later versions added MMX (Multi-Media eXtension) instructions
The infamous FDIV bug
Pentium Pro (1995), Pentium II (1997)
New microarchitecture (see Colwell, 7he Pentium Chronicles)
= Pentium III (1999)

Added SSE (Streaming SIMD Extensions) and associated
registers

Pentium 4 (2001)
New microarchitecture
Added SSE?2 instructions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 103

@ The College of New Jersey

The Intel x86 ISA

= And further...
= AMDG64 (2003): extended architecture to 64 bits

= EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)
Added SSE4 instructions, virtual machine support
AMDG64 (announced 2007): SSE5 instructions
Intel declined to follow, instead...
= Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions

= If Intel didn't extend with compatibility, its
competitors would!
= Technical elegance # market success

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 104

@ The College of New Jersey

Basic x86 Registers

Name Use
31 0
EAX GPR 0
ECX GPR t
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR7
CS Code segment pointer
S5 Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment painter 1
FS Data segment pointer 2
GS Data segment pointer 3
EIP Instruction paointer (PC)
EFLAGS Condition codes

105

E The College of New Jersey

|A-32 Register Restrictions

= Registers are not “general purpose” —
note the restrictions below

Register
Dascription rastrictions

Reglster Indiract Addrass |2 In 4 reglstar not ESP or EBP Tw s0, 00821
Basad mode with 5-ar 32-bit Address |s contants of base reglstar plus not ESP or EBP Tw ks0,10004s1yf#<l6-bit
displacemant displacamant. f#displacement
Basa plus scaled Index Tha addrass 1S Basa: any GPR mul $t0.4s2.4
Base + (2788 ¢ |ndex) Index: not ESF | add 40,410,451
where Scale has thevalue 0, 1, 2, or 3. Tw 30,0040y
Eass plus soaled Index with The addrass 1S Ease: any GPR mul $t0.4s2.4
8- 0r 32400t displacemant Base + (2599 % Indax) + displacement Index: rit ESP add 10, 4t0,4s1
where Scale has thevalue 0, 1, 2, or 3. Tw $50,10004¢0) # =16-bit
#displacement

AGURE 2.42 1A-32 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled Index
addressing mede, not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale factor of 2) to turn an index in a register into a
byte address (see Figures 2.34 and 2.36). A scale factor of 1 15 used for 16-bit data, and a scale factor of 3 for 64-bit data. Scale factor of 0 means the
address is not scaled. If the displacement is longer than 16 bits in the second er fourth medes, then the MIPS equivalent mode would need two more
instructions: a 101 to load the upper 16 bits of the displacerment and an add to sum the upper address with the base register 45 1. (Intel gives twao dif-
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 106

= [TWO operands

ﬁl The College of New Jersey

Basic x86 Addressing Modes

per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

= Memory addressing modes

= Address in register

= Address = R, .. + displacement
= Address = R, + 25@ x R, (scale =0, 1, 2, or 3)
= Address = R, + 25@€ x R, + displacement

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY

107

ﬁl The College of New Jersey

x86 Instruction Encoding

a.JE EIP + displacemant
4 4 B
JE Condi

o aner = Variable length
e, . encoding

— = Postfix bytes specify
P e R Perw addressing mode

Postivte

i = Prefix bytes modify
— = operation
2 Operand length,

ADD |Reg|w Immediate
L TesT £, a2 repetition, locking,
TE?ST ‘:' POB::MO Imm::late

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 108

ﬁl The College of New Jersey

Implementing |A-32

= Complex instruction set makes
implementation difficult

= Hardware translates instructions to simpler
microoperations
Simple instructions: 1-1
Complex instructions: 1-many

= Microengine similar to RISC
= Market share makes this economically viable

= Comparable performance to RISC
= Compilers avoid complex instructions

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 109

ﬁl The College of New Jersey

Intel Architecture

“This history Iillustrates the impact of the “golden
handcuffs” of compatibility

“adding new features as someone might add
clothing to a packed bag”

“an architecture that is difficult to explain and
Impossible to love”

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 110

ﬁl The College of New Jersey

A dominant architecture: 80x86

= Saving grace:

« the most frequently used instructions are not too
difficult to build

« compilers avoid the portions of the architecture
that are slow

“what the 80x86 lacks In style is made up In
quantity,
making It beautiful from the right perspective”

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 111

@ The College of New Jersey

PowerPC

= Indexed addressing
= example: lw Stl,Sa0+Ss3 #Stl=Memory[$a0+$s3]

= What do we have to do in MIPS?

= Update addressing
= update a register as part of load (for marching through arrays)
= example: 1wu $t0,4($s3) #StO0=Memory[$s3+4];5$s3=5s3+4
= What do we have to do in MIPS?

s Others:

= load multiple/store multiple
= a special counter register “bc Loop”
decrement counter, if not O goto loop

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 112

ﬁl The College of New Jersey

Fallacies

= Powerful instruction = higher performance

= Fewer instructions required

= But complex instructions are hard to implement
May slow down all instructions, including simple ones

= Compilers are good at making fast code from
simple instructions

= Use assembly code for high performance

= But modern compilers are better at dealing with
modern processors

= More lines of code = more errors and less
productivity

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 113

ﬁl The College of New Jersey

Fallacies

= Backward compatibility = instruction set
doesn’t change

-100I03ut they do accrete more instructions

900 -
800 -
700
600 -
5001 x86 instruction set
400
300 A
200
100 -

O e o o e e LS I O I s o o o o o s s o e e

.\6\q’\q‘bo\q‘bm\@‘bb‘,\q‘bb\g‘b%,\q"-"o\q‘bq'\q‘bh\ng SOOI

Number of Instructions

Year

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 114

ﬁl The College of New Jersey

Pitfalls

= Sequential words are not at sequential
addresses

= Increment by 4, not by 1!
= Keeping a pointer to an automatic
variable after procedure returns
= €.g., passing pointer back via an argument

= Pointer becomes invalid when stack
popped

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 115

ﬁl The College of New Jersey

Concluding Remarks

= Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

= Layers of software/hardware
= Compiler, assembler, hardware

= MIPS: typical of RISC ISAs
= X86

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 116

ﬁl The College of New Jersey

Concluding Remarks

= Measure MIPS instruction executions in
benchmark programs
= Consider making the common case fast

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer Tw, sw, 1b, Tbu, 35% 36%
Th, Thu, sb, Tui

Logical and, or, nor, andi, 12% 4%
ori, sll1, srl

Cond. Branch beqg, bne, slt, 34% 8%
sTti, sltiu

Jump j, jr, jal 2% 0%

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 117

ﬁ The College of New Jersey
‘ Overview of MIPS

= simple instructions all 32 bits wide
= Vvery structured, no unnecessary baggage
= only three instruction formats

<[oo [s [et [rd | shamt | funct |
[o | rs [o, [16bitnmumber |
e | = bivaddress |

= rely on compiler to achieve performance
— what are the compiler's goals?

= help compiler where we can

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 118

EM‘ | The College of New Jersey

Addresses in Branches and Jumps

= Instructions:

bne $t4,st5,Label Next instruction is at Label if $t4 # S$t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

s Formats:

= Addresses are not 32 bits
— How do we handle this with load and store instructions?

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 119

El\h' | The College of New Jersey

Addresses In Branches

= Instructions:

bne $t4,$t5, Label Next instruction is at Label if $t4 # $t5
beqg $t4,$t5,Label Next instruction is at Label if $t4=%$t5
s Formats:

= Could specify a register (like lw and sw) and add it to address
= use Instruction Address Register (PC = program counter)
= most branches are local (principle of locality)

= Jump instructions just use high order bits of PC
= address boundaries of 256 MB

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 120

TO summarize:

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, Szero, |Fastlocations for data. In MIPS, data must be in registers to perform
32 registers |$a0-%$a3, $v0-$vl, S$gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, Ssp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 memory |Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category Instruction Example Meaning Comments
add add $sl, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $sl, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers
add immediate addi $sl, $s2, 100 |$sl = $s2 + 100 Used to add constants
load word lw $sl, 100($s2) $sl = Memory[$52 + 100]{Word from memory to register
store word sw $sl, 100($s2) Memory[$S2 + 100] = $s1 |Word from register to memory
Data transfer |load byte b $s1, 100($s2) $sl = Memory[$s2 + 100]|Byte from memory to register
store byte sb $sl, 100($s2) Memory[$s2 + 100] = $s1 |Byte from register to memory
load upper immediate |[1ui $sl1, 100 $s1=100*2' Loads constant in upper 16 bits
branch on equal beq $sl, $s2, 25 if ($s1 == $s2)goto Equal test; PC-relative branch
PC +4 + 100
branch on not equal |bne $sl, $s2, 25 if (s1 != $s2)goto Not equal test; PC-relative
-, PC +4 + 100
Conditional
branch set on less than slt $sl, $s2, $s3 [if($s2 < $s3) $sl=1; Compare less than; for beq, bne
else $s1 =0
set less than slti $sl, $s2, 100 [jf($s2 < 100) $sl=1; Compare less than constant
immediate else $s1 =0
jump J 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra goto Sra For switch, procedure return
tional jump jump and link jal 2500 $ra =PC + 4: go to 10000 [For procedure call

@ The College of New Jersey

1. Immediate addressing

| op I rs I rt | Immediate

2. Register addressing

| op | rs | rt | rd I | functl Registers
[

Register

3. Base addressing

| op | rs | rt | Address | Memory
I

| Register | é—v | Halfword | Word

[1

4. PC-relative addressing
| op | rs | rt | Address | Memory

| |IDC | (—b— Word

5. Pseudodirect addressing
| op | Address | Memory

| PC | (b—» Word

[1

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY 122

ﬁl The College of New Jersey

summary

= Instruction complexity is only one variable
= lower instruction count vs. higher CPI / lower
clock rate

= Design Principles:
« simplicity favors regularity
= smaller is faster
= good design demands compromise
= make the common case fast

s Instruction set architecture
= a very important abstraction indeed!

Electrical & Computer Engineering
School of Engineering
THE COLLEGE OF NEW JERSEY 123

