
Chapter 2

Instructions: Language of the
Computerp

Instructions:s uc o s:

Language of the Machine Language of the Machine
 More primitive than higher level

llanguages
e.g., no sophisticated control flow

 Very restrictive
e.g., MIPS Arithmetic Instructions

2

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructions:s uc o s:

We’ll be working with the MIPS We ll be working with the MIPS
instruction set architecture

simila to othe a chitect es de eloped similar to other architectures developed
since the 1980's
used by NEC Nintendo Silicon Graphics used by NEC, Nintendo, Silicon Graphics,
Sony

Design goals: maximize performance and
minimize cost reduce design time

3

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

minimize cost, reduce design time

Instructions:s uc o s:

1400
Other

1300

1200

1100

1000

900

Other
SPARC
Hitachi SH
PowerPC
Motorola 68K
MIPS
IA-32

800

700

600

500

400

ARM

300

200

100

0
1998 2000 2001 20021999

4

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instruction SetInstruction Set

 The repertoire of instructions of a computer The repertoire of instructions of a computer
 Different computers have different instruction

sets
 But with many aspects in common

 Early computers had very simple instruction
tsets

 Simplified implementation
 Many modern computers also have simple Many modern computers also have simple

instruction sets

5

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The MIPS Instruction SetThe MIPS Instruction Set

 Used as the example throughout the book Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www mips com)Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics Applications in consumer electronics,
network/storage equipment, cameras, printers, …

 Typical of many modern ISAsyp y
 See MIPS Reference Data tear-out card, and

Appendixes B and E

6

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS arithmeticS a e c

 All instructions have 3 operandsp
 Operand order is fixed (destination first)

Example:
C code: A = B + C
MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

“The natural number of operands for an operation like
addition is three…requiring every instruction to have

tl th d d lexactly three operands, no more and no less,
conforms to the philosophy of keeping the hardware
simple”

7

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS arithmeticS a e c

Design Principle: simplicity favors Design Principle: simplicity favors
regularity. Why?
Of thi li t Of course this complicates some
things...
C code A B C DC code: A = B + C + D;

E = F - A;
MIPS code: dd $t0 $ 1 $ 2MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
b $ 4 $ 5 $ 0

8

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

sub $s4, $s5, $s0

MIPS arithmeticS a e c

Operands must be registers only 32 Operands must be registers, only 32
registers provided
D i P i i l ll i f t Design Principle: smaller is faster.
Why?

9

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Arithmetic OperationsArithmetic Operations

Add and subtract three operands Add and subtract, three operands
 Two sources and one destination
dd b # b add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularityg y
 Regularity makes implementation simpler
 Simplicity enables higher performance at

10

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Simplicity enables higher performance at
lower cost

Registers vs. Memory

 Arithmetic instructions operands must be registers

eg s e s s. e o y

 Arithmetic instructions operands must be registers,
— only 32 registers provided

 Compiler associates variables with registers
 What about programs with lots of variables

Control

D t th

Memory

Input

O t t

Processor I/O

Datapath Output

11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Register OperandsRegister Operands

 Arithmetic instructions use register Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
Use for frequently accessed data Use for frequently accessed data

 Numbered 0 to 31
 32-bit data called a “word”

A bl Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 main memory: millions of locations

12

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Register Operand ExampleRegister Operand Example

C code: C code:
f = (g + h) - (i + j);

f j i $ 0 $ 4 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
b $ 0 $t0 $t1sub $s0, $t0, $t1

13

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Registers vs MemoryRegisters vs. Memory

 Registers are faster to access than memory Registers are faster to access than memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables as
h iblmuch as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

14

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

 Viewed as a large single- Viewed as a large, single-
dimension array, with an
address.

0
1

8 bits of data

8 bits of dataaddress.
 A memory address is an index

into the array

1
2
3
4

8 bits of data

8 bits of data

8 bits of data

8 bit f d tinto the array
 "Byte addressing" means that

the index points to a byte of

4
5
6

8 bits of data

8 bits of data

8 bits of datathe index points to a byte of
memory.

...

15

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

Bytes are nice but most data items use Bytes are nice, but most data items use
larger "words"
F MIPS d i 32 bit 4 b t For MIPS, a word is 32 bits or 4 bytes.
0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

...

16

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

232 bytes with byte addresses from 0 to 232 bytes with byte addresses from 0 to
232-1
230 d ith b t dd 0 4 8 230 words with byte addresses 0, 4, 8,
... 232-4

 Words are aligned
i.e., what are the least 2 significant bits
of a word address?

17

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory OperandsMemory Operands
 Main memory used for composite datay p

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registersLoad values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byteac add ess de es a 8 b by e

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian MIPS is Big Endian
 Most-significant byte at least address of a word
 Little Endian: least-significant byte at least address

18

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Operand Example 1Memory Operand Example 1

 C code: C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32de 8 equ es o set o 3

 4 bytes per word

lw $t0, 32($s3) # load word
dd $ 1 $ 2 $t0add $s1, $s2, $t0

offset base register

19

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Operand Example 2Memory Operand Example 2

C code: C code:
A[12] = h + A[8];

h i $ 2 b dd f A i $ 3 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

20

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Immediate OperandsImmediate Operands

 Constant data specified in an instruction Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common case
fast
 Small constants are common
 Immediate operand avoids a load instruction

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Constant ZeroThe Constant Zero

MIPS register 0 ($zero) is the constant MIPS register 0 ($zero) is the constant
0

C nnot be o e itten Cannot be overwritten

 Useful for common operations
 E.g., move between registers
add $t2, $s1, $zero

22

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Unsigned Binary IntegersUnsigned Binary Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: 0 to +2n – 1 Range: 0 to +2 1
 Example

0000 0000 0000 0000 0000 0000 0000 1011 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

23

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0 to 4,294,967,295

2s Complement Signed Integers2s-Complement Signed Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1 Range: 2 to +2 1
 Example

1111 1111 1111 1111 1111 1111 1111 1100 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

24

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2,147,483,648 to 2,147,483,647

2s Complement Signed Integers2s-Complement Signed Integers

 Bit 31 is sign bitg
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
Non negative numbers have the same unsigned and 2s Non-negative numbers have the same unsigned and 2s-
complement representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

N ti C l t d dd 1 Negation: Complement and add 1
 Complement means 1 → 0, 0 → 1

25

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Sign ExtensionSign Extension

 Representing a number using more bits Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
addi: extend immediate value addi: extend immediate value

 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

R li h i bi h l f Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bitp
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

26

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructionss uc o s

 Load and store instructions
 Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0
$t0 32($ 3)sw $t0, 32($s3)

 Store word has destination last
b h d Remember arithmetic operands are registers, not

memory!
Can’t ite dd 48($ 3) $ 2 32($ 3)

27

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Can’t write: add 48($s3), $s2, 32($s3)

Our First ExampleOu s a p e

Can we figure out the code? Can we figure out the code?

swap(int v[], int k);
{ int temp;{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
li $2 $5 4muli $2, $5, 4

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

28

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

So far we’ve learned:So a e e ea ed:

MIPS MIPS
- loading words but addressing bytes

arithmetic on registers only- arithmetic on registers only
 Instruction Meaning
add $s1 $s2 $s3 $s1 $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

29

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

 Instructions like registers and words of data are

ac e a guage

 Instructions, like registers and words of data, are
also 32 bits long
 Example: add $t0, $s1, $s2

i t h b registers have numbers, $t0=9, $s1=17, $s2=18

 Instruction Format:
000000 10001 10010 01001 00000 100000

op rs rt rd shamt funct

000000 10001 10010 01001 00000 100000

 Can you guess what the field names stand for?

30

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

Consider the load word and store word

ac e a guage

 Consider the load-word and store-word
instructions,

What o ld the eg la it p inciple ha e s What would the regularity principle have us
do?
New principle: Good design demands a New principle: Good design demands a
compromise

31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

Introduce a new type of instruction

ac e a guage

 Introduce a new type of instruction
format

I t pe fo data t ansfe inst ctions I-type for data transfer instructions
 other format was R-type for register

l Example: lw $t0, 32($s2)
35 18 9 32

 Where's the compromise?

op rs rt 16 bit number

32

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Where s the compromise?

Representing InstructionsRepresenting Instructions

 Instructions are encoded in binary Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation code (opcode),

register numbers, …g ,
 Regularity!

 Register numbers
$t0 $t7 ’ 8 15 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

33

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS R format InstructionsMIPS R-format Instructions

op rs rt rd shamt funct

 Instruction fields

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 Instruction fields
 op: operation code (opcode)

rs: first source register number rs: first source register number
 rt: second source register number

d d ti ti i t b rd: destination register number
 shamt: shift amount (00000 for now)

f f d (d d)
34

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 funct: function code (extends opcode)

R format ExampleR-format Example

dd $ 0 $ 1 $ 2

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

35

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2 16

MIPS I format InstructionsMIPS I-format Instructions

op rs rt constant or address

 Immediate arithmetic and load/store instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises

Diff t f t li t d di b t ll 32 bit Different formats complicate decoding, but allow 32-bit
instructions uniformly

 Keep formats as similar as possible

36

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Logical OperationsLogical Operations

Instructions for bitwise manipulation Instructions for bitwise manipulation
Operation C Java MIPS
Shift left << << sllShift left << << sll

Shift right >> >>> srl

Bitwise AND & & and andiBitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ norBitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

37

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

groups of bits in a word

Shift OperationsShift Operations

op rs rt rd shamt funct

 shamt: how many positions to shift

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 shamt: how many positions to shift
 Shift left logical

Shift left and fill with 0 bits Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

Shift right logical Shift right logical
 Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)

38

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 srl by i bits divides by 2i (unsigned only)

AND OperationsAND Operations

Useful to mask bits in a word Useful to mask bits in a word
 Select some bits, clear others to 0

and $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0 0000 0000 0000 0000 0000 1100 0000 0000$t0

39

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

OR OperationsOR Operations

Useful to include bits in a word Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0 0000 0000 0000 0000 0011 1101 1100 0000$t0

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

NOT OperationsNOT Operations

Useful to invert bits in a word Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

MIPS h NOR 3 d i i MIPS has NOR 3-operand instruction
 a NOR b == NOT (a OR b)

Register 0: always

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

Register 0: always
read as zero

$

1111 1111 1111 1111 1100 0011 1111 1111$t0

41

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Conditional OperationsConditional Operations

 Branch to a labeled instruction if a condition Branch to a labeled instruction if a condition
is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;
b 1 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1 j L1
 unconditional jump to instruction labeled L1

42

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Compiling If StatementsCompiling If Statements

 C code: C code:
if (i==j) f = g+h;
else f = g-h;else f = g-h;

 f, g, … in $s0, $s1, …
C il d MIPS d Assembler calculates addresses

 Compiled MIPS code:
bne $s3, $s4, Else
dd $ $ $

Assembler calculates addresses

add $s0, $s1, $s2
j Exit

Else: sub $s0 $s1 $s2

43

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Else: sub $s0, $s1, $s2
Exit: …

Compiling Loop StatementsCompiling Loop Statements

 C code: C code:
while (save[i] == k) i += 1;

i i $ 3 k i $ 5 dd f i $ 6 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:

ll $ 1 $ 3 2Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1), ()
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

44

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

j Loop
Exit: …

Basic BlocksBasic Blocks

A basic block is a sequence of A basic block is a sequence of
instructions with

No embedded b n he (e ept t end) No embedded branches (except at end)
 No branch targets (except at beginning)

A ompile identifie b i A compiler identifies basic
blocks for optimization
An advanced processor An advanced processor
can accelerate execution
of basic blocks

45

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

of basic blocks

More Conditional
OperationsOperations

 Set result to 1 if a condition is true Set result to 1 if a condition is true
 Otherwise, set to 0

 slt rd rs rt slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

46

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch Instruction DesignBranch Instruction Design

 Why not blt bge etc? Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock
All i i li d! All instructions penalized!

 beq and bne are the common case
 This is a good design compromise

47

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Signed vs UnsignedSigned vs. Unsigned

 Signed comparison: slt slti Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui

Example Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

48

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Procedure CallingProcedure Calling

Steps required Steps required
1. Place parameters in registers
2 T f t l t d2. Transfer control to procedure
3. Acquire storage for procedure

f d ’4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call

49

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Stored Program ComputersStored Program Computers

 Instructions represented in
The BIG Picture

 Instructions represented in
binary, just like data

 Instructions and data
stored in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows Binary compatibility allows
compiled programs to work
on different computers

50

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Standardized ISAs

Stored Program Concept

Fetch & Execute Cycle

S o ed og a Co cep

 Fetch & Execute Cycle
 Instructions are fetched and put into a

special registerspecial register
 Bits in the register "control" the

subsequent actionssubsequent actions
 Fetch the “next” instruction and continue

51

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

Decision making instructions

Co o

 Decision making instructions
 alter the control flow,

i h th " t" i t ti t b i.e., change the "next" instruction to be
executed

52

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

MIPS conditional branch instructions:

Co o

 MIPS conditional branch instructions:
bne $t0, $t1, Label
beq $t0 $t1 Labelbeq $t0, $t1, Label

E ample if (i j) h i + j Example: if (i==j) h = i + j;
bne $s0, $s1, Label
dd $ 3 $ 0 $ 1add $s3, $s0, $s1

Label:

53

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

 MIPS unconditional branch instructions:

Co o

 MIPS unconditional branch instructions:
j label

 Example:
if (i!=j) beq $s4, $s5, Lab1

h=i+j; add $s3, $s4, $s5
else j Lab2j

h=i-j; Lab1: sub $s3, $s4, $s5
Lab2:...

 Can you build a simple for loop?

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y p f p

So far:So a :

 Instruction Meaningg
add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

 Formats:

op rs rt rd shamt functR

op rs rt 16 bit numberI

55

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

op 26 bit addressJ

Control Flow

 We have: beq, bne, what about Branch-if-less-than?

Co o o

 We have: beq, bne, what about Branch if less than?
 New instruction:

if $s1 < $s2 then
$t0 = 1$

slt $t0, $s1, $s2 else
$t0 = 0

 Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

 Note that the assembler needs a register to do this,Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

56

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Policy of Use ConventionsPolicy of Use Conventions
Name Register number Usage Preserved on call?

$zero 0 the constant value 0 n.a.$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results and expression evaluation no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$ 0 $ 7 16 23 saved yes$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Register 1 ($at) reserved for assembler, 26-27 for operating system

Memory LayoutMemory Layout

 Text: program code Text: program code
 Static data: global variables

 e.g., static variables in C,
constant arrays and stringsconstant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segmentg

 Dynamic data: heap
 E.g., malloc in C, new in Java

Stack: automatic storage Stack: automatic storage

58

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Local Data on the StackLocal Data on the Stack

 Local data allocated by callee Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Used by some compilers to manage stack storage

Procedure Call InstructionsProcedure Call Instructions

 Procedure call: jump and link Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump registerj p g
jr $ra

 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

60

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Leaf Procedure ExampleLeaf Procedure Example

C code: C code:
int leaf_example (int g, h, i, j)
{ int f;{ int f;
f = (g + h) - (i + j);
return f;;

}

 Arguments g, …, j in $a0, …, $a3g g, , j $, , $
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

61

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Result in $v0

Leaf Procedure ExampleLeaf Procedure Example

 MIPS code: MIPS code:
leaf_example:

addi $sp, $sp, -4
sw $s0 0($sp)

Save $s0 on stack

sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0 $t0 $t1

Procedure body

sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
ddi $ $ 4

Restore $s0

Result

addi $sp, $sp, 4
jr $ra Return

62

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non Leaf ProceduresNon-Leaf Procedures

Procedures that call other procedures Procedures that call other procedures
 For nested call, caller needs to save on

th t kthe stack:
 Its return address
 Any arguments and temporaries needed

after the call

 Restore from the stack after the call

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non Leaf Procedure ExampleNon-Leaf Procedure Example

C code: C code:
int fact (int n)
{ {
if (n < 1) return f;
else return n * fact(n - 1);();

}

 Argument n in $a0g $
 Result in $v0

64

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non-Leaf Procedure
ExampleExample

 MIPS code: MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
 $ 0 0($) # tsw $a0, 0($sp) # save argument

slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
ddi $ $ 8 # 2 it f t kaddi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
l $ 0 0($) # t i i l lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
j $ # d t

65

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

jr $ra # and return

Character DataCharacter Data

 Byte-encoded character sets Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 controlg p ,

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

M t f th ld’ l h b t l b l Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

66

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Byte/Halfword OperationsByte/Halfword Operations

 Could use bitwise operations Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rtg
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
ff ffsb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

67

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

String Copy ExampleString Copy Example

C code: C code:
 Null-terminated string
id t (h [] h [])void strcpy (char x[], char y[])

{ int i;
i = 0;i = 0;
while ((x[i]=y[i])!='\0')
i += 1;;

}

 Addresses of x, y in $a0, $a1

68

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y
 i in $s0

String Copy ExampleString Copy Example

 MIPS code: MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
dd $ 3 $ 0 $ 0 # dd f [i] i $ 3add $t3, $s0, $a0 # addr of x[i] in $t3

sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1$, $,
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

jr $ra # and return

Constants

 Small constants are used quite frequently

Co s a s

 Small constants are used quite frequently
(50% of operands)

e.g., A = A + 5;g , ;
B = B + 1;
C = C - 18;

 Solutions? Why not?
 put 'typical constants' in memory and load them.
 create hard-wired registers (like $zero) for

constants like one.

70

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Constants

 MIPS Instructions:

Co s a s

 MIPS Instructions:

addi $29, $29, 4
slti $8 $18 10slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

 How do we make this work?

 Design Principle: Make the common case
fast. Which format?

71

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

How about larger constants?

 We'd like to be able to load a 32 bit constant into a register

o abou a ge co s a s?

g
 Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010
filled with zeros

 Then must get the lower order bits right, i.e.,

1010101010101010 0000000000000000

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

72

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch AddressingBranch Addressing

Branch instructions specify Branch instructions specify
 Opcode, two registers, target address

M b h b h Most branch targets are near branch
 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

PC relative addressing PC-relative addressing
 Target address = PC + offset × 4

PC l d i t d b 4 b thi ti
73

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 PC already incremented by 4 by this time

Jump AddressingJump Addressing

 Jump (j and jal) targets could be Jump (j and jal) targets could be
anywhere in text segment

En ode f ll dd e in in t tion Encode full address in instruction
op address

6 bit 26 bits6 bits 26 bits

 (Pseudo)Direct jump addressing
Target address = PC : (address × 4) Target address = PC31…28 : (address × 4)

74

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branching Far AwayBranching Far Away

If branch target is too far to encode If branch target is too far to encode
with 16-bit offset, assembler rewrites
the codethe code

 Example
$ $beq $s0,$s1, L1

↓
bne $s0,$s1, L2
j L1

L2

75

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

L2: …

Addressing Mode SummaryAddressing Mode Summary

76

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

SynchronizationSynchronization

 Two processors sharing an area of memory Two processors sharing an area of memory
 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

R l d d f d f Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation/ y p
 No other access to the location allowed between the read

and write

 Could be a single instruction Could be a single instruction
 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

77

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Synchronization in MIPS Synchronization in MIPS

 Load linked: ll rt, offset(rs) Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
Returns 1 in rt Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

Example: atomic swap (to test/set lock variable) Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

 $ 0 0($ 1) di i lsc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Translation and StartupTranslation and Startup

Many compilers produce
object modules directly

Static linking

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Assembler PseudoinstructionsAssembler Pseudoinstructions

Most assembler instructions represent Most assembler instructions represent
machine instructions one-to-one
P d i t ti fi t f th Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (register 1): assembler temporary

80

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Producing an Object ModuleProducing an Object Module

 Assembler (or compiler) translates program into Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete program
from the piecesfrom the pieces
 Header: described contents of object module
 Text segment: translated instructions

St ti d t t d t ll t d f th lif f th Static data segment: data allocated for the life of the
program

 Relocation info: for contents that depend on absolute
location of loaded programlocation of loaded program

 Symbol table: global definitions and external refs
 Debug info: for associating with source code

81

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Linking Object ModulesLinking Object Modules

 Produces an executable image Produces an executable image
1.Merges segments
2.Resolve labels (determine their addresses)2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

 Could leave location dependencies for fixing p g
by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location in

virtual memory space

82

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loading a ProgramLoading a Program

 Load from image file on disk into memory Load from image file on disk into memory
1.Read header to determine segment sizes
2.Create virtual address space2.Create virtual address space
3.Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4.Set up arguments on stack
5.Initialize registers (including $sp, $fp, $gp)
6 J t t t ti6.Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

83

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y

Dynamic LinkingDynamic Linking

Only link/load library procedure when it Only link/load library procedure when it
is called

Req i e p o ed e ode to be elo t ble Requires procedure code to be relocatable
 Avoids image bloat caused by static linking

of all (transitively) referenced librariesof all (transitively) referenced libraries
 Automatically picks up new library versions

84

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Lazy LinkageLazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

85

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Starting Java ApplicationsStarting Java Applications

Si l t blSimple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

86

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

C Sort ExampleC Sort Example

 Illustrates use of assembly instructions for Illustrates use of assembly instructions for
a C bubble sort function

 Swap procedure (leaf)p p ()
void swap(int v[], int k)
{

int temp;int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;v[k+1] temp;

}

 v in $a0, k in $a1, temp in $t0

87

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Procedure SwapThe Procedure Swap

swap: sll $t1 $a1 2 # $t1 = k * 4swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0 0($t1) # $t0 (temp) v[k]lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 $t0 4($t1) # [k 1] $t0 (t)sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling
routine

88

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Sort Procedure in CThe Sort Procedure in C
 Non-leaf (calls swap)(p)

void sort (int v[], int n)
{
int i, j;
for (i = 0; i < n; i += 1) {
for (j = i – 1;

j >= 0 && v[j] > v[j + 1];
j 1) {j -= 1) {

swap(v,j);
}

}}
}

 v in $a0, k in $a1, i in $s0, j in $s1

89

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Procedure BodyThe Procedure Body
move $s2, $a0 # save $a0 into $s2

move $s3, $a1 # save $a1 into $s3
Move
params

move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

addi $s1, $s0, –1 # j = i – 1

Outer loop

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

sll $t1, $s1, 2 # $t1 = j * 4

add $t2, $s2, $t1 # $t2 = v + (j * 4)
Inner loop

lw $t3, 0($t2) # $t3 = v[j]

lw $t4, 4($t2) # $t4 = v[j + 1]

slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

move $a0, $s2 # 1st param of swap is v (old $a0)

move $a1, $s1 # 2nd param of swap is j

jal swap # call swap procedure

addi $s1, $s1, –1 # j –= 1

Pass
params
& call

Inner loop

90

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

j for1tst # jump to test of outer loop

Inner loop

Outer loop

The Full Procedure
sort: addi $sp,$sp, –20 # make room on stack for 5 registers

The Full Procedure
p p g

sw $ra, 16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack, p

sw $s0, 0($sp) # save $s0 on stack

… # procedure body

…

exit1: lw $s0, 0($sp) # restore $s0 from stack, (p)

lw $s1, 4($sp) # restore $s1 from stack

lw $s2, 8($sp) # restore $s2 from stack

lw $s3,12($sp) # restore $s3 from stack

lw $ra,16($sp) # restore $ra from stack, (p)

addi $sp,$sp, 20 # restore stack pointer

jr $ra # return to calling routine

91

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Effect of Compiler OptimizationEffect of Compiler Optimization
Compiled with gcc for Pentium 4 under Linux

1 5

2

2.5

3 Relative Performance

80000

100000

120000

140000 Instruction count

0

0.5

1

1.5

none O1 O2 O3
0

20000

40000

60000

none O1 O2 O3none O1 O2 O3

120000
140000
160000
180000 Clock Cycles

none O1 O2 O3

1.5

2 CPI

20000
40000
60000
80000

100000
120000

0.5

1

92

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0
0000

none O1 O2 O3
0

none O1 O2 O3

Effect of Lang age and AlgorithmEffect of Language and Algorithm

2.5

3 Bubblesort Relative Performance

0

0.5

1

1.5

2

C/ C/O1 C/O2 C/O3 J /i t J /JITC/none C/O1 C/O2 C/O3 Java/int Java/JIT

1.5

2

2.5 Quicksort Relative Performance

0

0.5

1

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

1500

2000

2500

3000 Quicksort vs. Bubblesort Speedup

93

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0

500

1000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Lessons LearntLessons Learnt

Instruction count and CPI are not good Instruction count and CPI are not good
performance indicators in isolation
C il ti i ti iti t Compiler optimizations are sensitive to
the algorithm

 Java/JIT compiled code is significantly
faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

94

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

g g

Arrays vs PointersArrays vs. Pointers

Array indexing involves Array indexing involves
 Multiplying index by element size

Addi t b dd Adding to array base address

 Pointers correspond directly to
ddmemory addresses

 Can avoid indexing complexity

95

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Comparison of Array vs PtrComparison of Array vs. Ptr

 Multiply “strength reduced” to shift Multiply strength reduced to shift
 Array version requires shift to be inside loop

 Part of index calculation for incremented i Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as manual Compiler can achieve same effect as manual
use of pointers
 Induction variable elimination
 Better to make program clearer and safer

96

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ARM & MIPS SimilaritiesARM & MIPS Similarities

 ARM: the most popular embedded core ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

I t/ t t M M

97

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Input/output Memory
mapped

Memory
mapped

Compare and Branch in ARMCompare and Branch in ARM

Uses condition codes for result of an Uses condition codes for result of an
arithmetic/logical instruction

Neg ti e e o o e flo Negative, zero, carry, overflow
 Compare instructions to set condition

codes without keeping the resultcodes without keeping the result

 Each instruction can be conditional
 Top 4 bits of instruction word: condition

value
C id b h i l i t ti

98

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Can avoid branches over single instructions

Instruction EncodingInstruction Encoding

99

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Alternative Architectures

Design alternative:

e a e c ec u es

 Design alternative:
 provide more powerful operations

 goal is to reduce number of instructions
executed

 danger is a slower cycle time and/or a
higher CPIhigher CPI

–“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler

100

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

instructions”

Alternative Architectures

Sometimes referred to as “RISC vs CISC”

e a e c ec u es

 Sometimes referred to as RISC vs. CISC
 virtually all new instruction sets since 1982 have

been RISCbeen RISC

 VAX: minimize code size, make assembly
language easylanguage easy

instructions from 1 to 54 bytes long!

We’ll look at PowerPC and Intel Architecture We ll look at PowerPC and Intel Architecture
(IA)

101

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Intel x86 ISAThe Intel x86 ISA

 Evolution with backward compatibility Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

8086 (1978) 16 bit t i t 8080 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations
 Paged memory mapping as well as segments

102

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

g y pp g g

The Intel x86 ISAThe Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension) instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell The Pentium Chronicles) New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers
P i 4 (2001) Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

103

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Intel x86 ISAThe Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructionsg g ,

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

104

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Basic x86 RegistersBasic x86 Registers

105

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

IA 32 Register RestrictionsIA-32 Register Restrictions

Registers are not “general purpose” Registers are not general purpose –
note the restrictions below

106

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Basic x86 Addressing ModesBasic x86 Addressing Modes

 Two operands per instruction Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory RegisterMemory Register

Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

107

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Address = Rbase + 2scale × Rindex + displacement

x86 Instruction Encodingx86 Instruction Encoding

Variable length Variable length
encoding

Po tfi b te pe if Postfix bytes specify
addressing mode
Prefix bytes modify Prefix bytes modify
operation
 Operand length Operand length,

repetition, locking,
…

108

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Implementing IA 32Implementing IA-32

 Complex instruction set makes Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

C l i t ti 1 Complex instructions: 1–many

 Microengine similar to RISC
 Market share makes this economically viable Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

109

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Compilers avoid complex instructions

Intel Architecturee c ec u e

“This history illustrates the impact of the “goldenThis history illustrates the impact of the golden
handcuffs” of compatibility

“ ddi f i h dd“adding new features as someone might add
clothing to a packed bag”

“an architecture that is difficult to explain and
impossible to love”

110

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

A dominant architecture: 80x86

 Saving grace: Saving grace:
 the most frequently used instructions are not too

difficult to build
 compilers avoid the portions of the architecture

that are slow

“what the 80x86 lacks in style is made up in
quantityquantity,
making it beautiful from the right perspective”

111

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

PowerPCo e C

 Indexed addressingg
 example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
 What do we have to do in MIPS?

d dd Update addressing
 update a register as part of load (for marching through arrays)
 example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

 What do we have to do in MIPS? What do we have to do in MIPS?

 Others:
 load multiple/store multipleload multiple/store multiple
 a special counter register “bc Loop”

decrement counter, if not 0 goto loop

112

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

FallaciesFallacies

 Powerful instruction higher performance Powerful instruction higher performance
 Fewer instructions required
 But complex instructions are hard to implement But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from
i l i isimple instructions

 Use assembly code for high performance
B t d il b tt t d li ith But modern compilers are better at dealing with
modern processors

 More lines of code more errors and less

113

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 More lines of code more errors and less
productivity

FallaciesFallacies

 Backward compatibility instruction set Backward compatibility instruction set
doesn’t change
 But they do accrete more instructions But they do accrete more instructions

x86 instruction set

114

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

PitfallsPitfalls

Sequential words are not at sequential Sequential words are not at sequential
addresses

In ement b 4 not b 1! Increment by 4, not by 1!

 Keeping a pointer to an automatic
i bl ft d tvariable after procedure returns

 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack

popped

115

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concluding RemarksConcluding Remarks

 Design principles Design principles
1. Simplicity favors regularity
2 Smaller is faster2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises4. Good design demands good compromises

 Layers of software/hardware
 Compiler assembler hardware Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 x86

116

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 x86

Concluding RemarksConcluding Remarks

 Measure MIPS instruction executions in Measure MIPS instruction executions in
benchmark programs
 Consider making the common case fast Consider making the common case fast
 Consider compromisesInstruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
i ll l

12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

117

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Jump j, jr, jal 2% 0%

Overview of MIPS

 simple instructions all 32 bits wide

O e e o S

 simple instructions all 32 bits wide
 very structured, no unnecessary baggage
 only three instruction formats

t d h t f t

op rs rt 16 bit number

op rs rt rd shamt functR

I

 rely on compiler to achieve performance

op 26 bit addressJ

rely on compiler to achieve performance
— what are the compiler's goals?

 help compiler where we can

118

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Addresses in Branches and Jumps

 Instructions:

p

bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

 Formats:

op rs rt 16 bit numberI

op 26 bit addressJ

 Addresses are not 32 bits
— How do we handle this with load and store instructions?

119

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Addresses in Branches

 Instructions:

dd esses a c es

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

 Formats: Formats:

op rs rt 16 bit numberI

 Could specify a register (like lw and sw) and add it to address
 use Instruction Address Register (PC = program counter)

b h l l (i i l f l li) most branches are local (principle of locality)

 Jump instructions just use high order bits of PC
 address boundaries of 256 MB

120

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0] Accessed only by data transfer instructions MIPS uses byte addresses soMemory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registersp ; g

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memorystore word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
i di t

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
l $ 1 0

Compare less than constant
immediate else $s1 = 0

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

1. Immediate addressing

2. Register addressing

op rs rt Immediate

Registers

Memory

Register

3. Base addressing

op rs rt

op rs rt Address

rd . . . funct

Byte Halfword WordRegister

4 PC relative addressing

+

Memory

Word

4. PC-relative addressing
op rs rt Address

PC +

Memory

Word

5. Pseudodirect addressing

op Address

PC

122

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Summary

 Instruction complexity is only one variable

Su a y

 Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower

clock rate

 Design Principles:
 simplicity favors regularity
 smaller is faster
 good design demands compromise
 make the common case fast

 Instruction set architecture

123

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 a very important abstraction indeed!

