
Chapter 2

Instructions: Language of the
Computerp

Instructions:s uc o s:

Language of the Machine Language of the Machine
 More primitive than higher level

llanguages
e.g., no sophisticated control flow

 Very restrictive
e.g., MIPS Arithmetic Instructions

2

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructions:s uc o s:

We’ll be working with the MIPS We ll be working with the MIPS
instruction set architecture

simila to othe a chitect es de eloped similar to other architectures developed
since the 1980's
used by NEC Nintendo Silicon Graphics used by NEC, Nintendo, Silicon Graphics,
Sony

Design goals: maximize performance and
minimize cost reduce design time

3

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

minimize cost, reduce design time

Instructions:s uc o s:

1400
Other

1300

1200

1100

1000

900

Other
SPARC
Hitachi SH
PowerPC
Motorola 68K
MIPS
IA-32

800

700

600

500

400

ARM

300

200

100

0
1998 2000 2001 20021999

4

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instruction SetInstruction Set

 The repertoire of instructions of a computer The repertoire of instructions of a computer
 Different computers have different instruction

sets
 But with many aspects in common

 Early computers had very simple instruction
tsets

 Simplified implementation
 Many modern computers also have simple Many modern computers also have simple

instruction sets

5

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The MIPS Instruction SetThe MIPS Instruction Set

 Used as the example throughout the book Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www mips com)Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics Applications in consumer electronics,
network/storage equipment, cameras, printers, …

 Typical of many modern ISAsyp y
 See MIPS Reference Data tear-out card, and

Appendixes B and E

6

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS arithmeticS a e c

 All instructions have 3 operandsp
 Operand order is fixed (destination first)

Example:
C code: A = B + C
MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

“The natural number of operands for an operation like
addition is three…requiring every instruction to have

tl th d d lexactly three operands, no more and no less,
conforms to the philosophy of keeping the hardware
simple”

7

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS arithmeticS a e c

Design Principle: simplicity favors Design Principle: simplicity favors
regularity. Why?
Of thi li t Of course this complicates some
things...
C code A B C DC code: A = B + C + D;

E = F - A;
MIPS code: dd $t0 $ 1 $ 2MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
b $ 4 $ 5 $ 0

8

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

sub $s4, $s5, $s0

MIPS arithmeticS a e c

Operands must be registers only 32 Operands must be registers, only 32
registers provided
D i P i i l ll i f t Design Principle: smaller is faster.
Why?

9

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Arithmetic OperationsArithmetic Operations

Add and subtract three operands Add and subtract, three operands
 Two sources and one destination
dd b # b add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularityg y
 Regularity makes implementation simpler
 Simplicity enables higher performance at

10

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Simplicity enables higher performance at
lower cost

Registers vs. Memory

 Arithmetic instructions operands must be registers

eg s e s s. e o y

 Arithmetic instructions operands must be registers,
— only 32 registers provided

 Compiler associates variables with registers
 What about programs with lots of variables

Control

D t th

Memory

Input

O t t

Processor I/O

Datapath Output

11

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Register OperandsRegister Operands

 Arithmetic instructions use register Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
Use for frequently accessed data Use for frequently accessed data

 Numbered 0 to 31
 32-bit data called a “word”

A bl Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 main memory: millions of locations

12

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Register Operand ExampleRegister Operand Example

C code: C code:
f = (g + h) - (i + j);

f j i $ 0 $ 4 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
b $ 0 $t0 $t1sub $s0, $t0, $t1

13

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Registers vs MemoryRegisters vs. Memory

 Registers are faster to access than memory Registers are faster to access than memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables as
h iblmuch as possible

 Only spill to memory for less frequently used
variables

 Register optimization is important!

14

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

 Viewed as a large single- Viewed as a large, single-
dimension array, with an
address.

0
1

8 bits of data

8 bits of dataaddress.
 A memory address is an index

into the array

1
2
3
4

8 bits of data

8 bits of data

8 bits of data

8 bit f d tinto the array
 "Byte addressing" means that

the index points to a byte of

4
5
6

8 bits of data

8 bits of data

8 bits of datathe index points to a byte of
memory.

...

15

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

Bytes are nice but most data items use Bytes are nice, but most data items use
larger "words"
F MIPS d i 32 bit 4 b t For MIPS, a word is 32 bits or 4 bytes.
0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

...

16

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Organizatione o y O ga a o

232 bytes with byte addresses from 0 to 232 bytes with byte addresses from 0 to
232-1
230 d ith b t dd 0 4 8 230 words with byte addresses 0, 4, 8,
... 232-4

 Words are aligned
i.e., what are the least 2 significant bits
of a word address?

17

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory OperandsMemory Operands
 Main memory used for composite datay p

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registersLoad values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byteac add ess de es a 8 b by e

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian MIPS is Big Endian
 Most-significant byte at least address of a word
 Little Endian: least-significant byte at least address

18

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Operand Example 1Memory Operand Example 1

 C code: C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32de 8 equ es o set o 3

 4 bytes per word

lw $t0, 32($s3) # load word
dd $ 1 $ 2 $t0add $s1, $s2, $t0

offset base register

19

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Memory Operand Example 2Memory Operand Example 2

C code: C code:
A[12] = h + A[8];

h i $ 2 b dd f A i $ 3 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

20

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Immediate OperandsImmediate Operands

 Constant data specified in an instruction Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common case
fast
 Small constants are common
 Immediate operand avoids a load instruction

21

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Constant ZeroThe Constant Zero

MIPS register 0 ($zero) is the constant MIPS register 0 ($zero) is the constant
0

C nnot be o e itten Cannot be overwritten

 Useful for common operations
 E.g., move between registers
add $t2, $s1, $zero

22

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Unsigned Binary IntegersUnsigned Binary Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: 0 to +2n – 1 Range: 0 to +2 1
 Example

0000 0000 0000 0000 0000 0000 0000 1011 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

23

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0 to 4,294,967,295

2s Complement Signed Integers2s-Complement Signed Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: –2n – 1 to +2n – 1 – 1 Range: 2 to +2 1
 Example

1111 1111 1111 1111 1111 1111 1111 1100 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

24

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2,147,483,648 to 2,147,483,647

2s Complement Signed Integers2s-Complement Signed Integers

 Bit 31 is sign bitg
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
Non negative numbers have the same unsigned and 2s Non-negative numbers have the same unsigned and 2s-
complement representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

N ti C l t d dd 1 Negation: Complement and add 1
 Complement means 1 → 0, 0 → 1

25

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Sign ExtensionSign Extension

 Representing a number using more bits Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
addi: extend immediate value addi: extend immediate value

 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

R li h i bi h l f Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bitp
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

26

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Instructionss uc o s

 Load and store instructions
 Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0
$t0 32($ 3)sw $t0, 32($s3)

 Store word has destination last
b h d Remember arithmetic operands are registers, not

memory!
Can’t ite dd 48($ 3) $ 2 32($ 3)

27

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Can’t write: add 48($s3), $s2, 32($s3)

Our First ExampleOu s a p e

Can we figure out the code? Can we figure out the code?

swap(int v[], int k);
{ int temp;{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
li $2 $5 4muli $2, $5, 4

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

28

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

So far we’ve learned:So a e e ea ed:

MIPS MIPS
- loading words but addressing bytes

arithmetic on registers only- arithmetic on registers only
 Instruction Meaning
add $s1 $s2 $s3 $s1 $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

29

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

 Instructions like registers and words of data are

ac e a guage

 Instructions, like registers and words of data, are
also 32 bits long
 Example: add $t0, $s1, $s2

i t h b registers have numbers, $t0=9, $s1=17, $s2=18

 Instruction Format:
000000 10001 10010 01001 00000 100000

op rs rt rd shamt funct

000000 10001 10010 01001 00000 100000

 Can you guess what the field names stand for?

30

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

Consider the load word and store word

ac e a guage

 Consider the load-word and store-word
instructions,

What o ld the eg la it p inciple ha e s What would the regularity principle have us
do?
New principle: Good design demands a New principle: Good design demands a
compromise

31

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Machine Language

Introduce a new type of instruction

ac e a guage

 Introduce a new type of instruction
format

I t pe fo data t ansfe inst ctions I-type for data transfer instructions
 other format was R-type for register

l Example: lw $t0, 32($s2)
35 18 9 32

 Where's the compromise?

op rs rt 16 bit number

32

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Where s the compromise?

Representing InstructionsRepresenting Instructions

 Instructions are encoded in binary Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation code (opcode),

register numbers, …g ,
 Regularity!

 Register numbers
$t0 $t7 ’ 8 15 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

33

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

MIPS R format InstructionsMIPS R-format Instructions

op rs rt rd shamt funct

 Instruction fields

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 Instruction fields
 op: operation code (opcode)

rs: first source register number rs: first source register number
 rt: second source register number

d d ti ti i t b rd: destination register number
 shamt: shift amount (00000 for now)

f f d (d d)
34

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 funct: function code (extends opcode)

R format ExampleR-format Example

dd $ 0 $ 1 $ 2

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

35

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

2 16

MIPS I format InstructionsMIPS I-format Instructions

op rs rt constant or address

 Immediate arithmetic and load/store instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises

Diff t f t li t d di b t ll 32 bit Different formats complicate decoding, but allow 32-bit
instructions uniformly

 Keep formats as similar as possible

36

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Logical OperationsLogical Operations

Instructions for bitwise manipulation Instructions for bitwise manipulation
Operation C Java MIPS
Shift left << << sllShift left << << sll

Shift right >> >>> srl

Bitwise AND & & and andiBitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ norBitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

37

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

groups of bits in a word

Shift OperationsShift Operations

op rs rt rd shamt funct

 shamt: how many positions to shift

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 shamt: how many positions to shift
 Shift left logical

Shift left and fill with 0 bits Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

Shift right logical Shift right logical
 Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)

38

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 srl by i bits divides by 2i (unsigned only)

AND OperationsAND Operations

Useful to mask bits in a word Useful to mask bits in a word
 Select some bits, clear others to 0

and $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0 0000 0000 0000 0000 0000 1100 0000 0000$t0

39

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

OR OperationsOR Operations

Useful to include bits in a word Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0 0000 0000 0000 0000 0011 1101 1100 0000$t0

40

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

NOT OperationsNOT Operations

Useful to invert bits in a word Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

MIPS h NOR 3 d i i MIPS has NOR 3-operand instruction
 a NOR b == NOT (a OR b)

Register 0: always

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

Register 0: always
read as zero

$

1111 1111 1111 1111 1100 0011 1111 1111$t0

41

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Conditional OperationsConditional Operations

 Branch to a labeled instruction if a condition Branch to a labeled instruction if a condition
is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;
b 1 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1 j L1
 unconditional jump to instruction labeled L1

42

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Compiling If StatementsCompiling If Statements

 C code: C code:
if (i==j) f = g+h;
else f = g-h;else f = g-h;

 f, g, … in $s0, $s1, …
C il d MIPS d Assembler calculates addresses

 Compiled MIPS code:
bne $s3, $s4, Else
dd $ $ $

Assembler calculates addresses

add $s0, $s1, $s2
j Exit

Else: sub $s0 $s1 $s2

43

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Else: sub $s0, $s1, $s2
Exit: …

Compiling Loop StatementsCompiling Loop Statements

 C code: C code:
while (save[i] == k) i += 1;

i i $ 3 k i $ 5 dd f i $ 6 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:

ll $ 1 $ 3 2Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1), ()
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

44

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

j Loop
Exit: …

Basic BlocksBasic Blocks

A basic block is a sequence of A basic block is a sequence of
instructions with

No embedded b n he (e ept t end) No embedded branches (except at end)
 No branch targets (except at beginning)

A ompile identifie b i A compiler identifies basic
blocks for optimization
An advanced processor An advanced processor
can accelerate execution
of basic blocks

45

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

of basic blocks

More Conditional
OperationsOperations

 Set result to 1 if a condition is true Set result to 1 if a condition is true
 Otherwise, set to 0

 slt rd rs rt slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

46

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch Instruction DesignBranch Instruction Design

 Why not blt bge etc? Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock
All i i li d! All instructions penalized!

 beq and bne are the common case
 This is a good design compromise

47

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Signed vs UnsignedSigned vs. Unsigned

 Signed comparison: slt slti Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui

Example Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

48

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Procedure CallingProcedure Calling

Steps required Steps required
1. Place parameters in registers
2 T f t l t d2. Transfer control to procedure
3. Acquire storage for procedure

f d ’4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call

49

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Stored Program ComputersStored Program Computers

 Instructions represented in
The BIG Picture

 Instructions represented in
binary, just like data

 Instructions and data
stored in memory

 Programs can operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows Binary compatibility allows
compiled programs to work
on different computers

50

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Standardized ISAs

Stored Program Concept

Fetch & Execute Cycle

S o ed og a Co cep

 Fetch & Execute Cycle
 Instructions are fetched and put into a

special registerspecial register
 Bits in the register "control" the

subsequent actionssubsequent actions
 Fetch the “next” instruction and continue

51

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

Decision making instructions

Co o

 Decision making instructions
 alter the control flow,

i h th " t" i t ti t b i.e., change the "next" instruction to be
executed

52

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

MIPS conditional branch instructions:

Co o

 MIPS conditional branch instructions:
bne $t0, $t1, Label
beq $t0 $t1 Labelbeq $t0, $t1, Label

E ample if (i j) h i + j Example: if (i==j) h = i + j;
bne $s0, $s1, Label
dd $ 3 $ 0 $ 1add $s3, $s0, $s1

Label:

53

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Control

 MIPS unconditional branch instructions:

Co o

 MIPS unconditional branch instructions:
j label

 Example:
if (i!=j) beq $s4, $s5, Lab1

h=i+j; add $s3, $s4, $s5
else j Lab2j

h=i-j; Lab1: sub $s3, $s4, $s5
Lab2:...

 Can you build a simple for loop?

54

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y p f p

So far:So a :

 Instruction Meaningg
add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

 Formats:

op rs rt rd shamt functR

op rs rt 16 bit numberI

55

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

op 26 bit addressJ

Control Flow

 We have: beq, bne, what about Branch-if-less-than?

Co o o

 We have: beq, bne, what about Branch if less than?
 New instruction:

if $s1 < $s2 then
$t0 = 1$

slt $t0, $s1, $s2 else
$t0 = 0

 Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

 Note that the assembler needs a register to do this,Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

56

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Policy of Use ConventionsPolicy of Use Conventions
Name Register number Usage Preserved on call?

$zero 0 the constant value 0 n.a.$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results and expression evaluation no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$ 0 $ 7 16 23 saved yes$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Register 1 ($at) reserved for assembler, 26-27 for operating system

Memory LayoutMemory Layout

 Text: program code Text: program code
 Static data: global variables

 e.g., static variables in C,
constant arrays and stringsconstant arrays and strings

 $gp initialized to address
allowing ±offsets into this
segmentg

 Dynamic data: heap
 E.g., malloc in C, new in Java

Stack: automatic storage Stack: automatic storage

58

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Local Data on the StackLocal Data on the Stack

 Local data allocated by callee Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Used by some compilers to manage stack storage

Procedure Call InstructionsProcedure Call Instructions

 Procedure call: jump and link Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump registerj p g
jr $ra

 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

60

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Leaf Procedure ExampleLeaf Procedure Example

C code: C code:
int leaf_example (int g, h, i, j)
{ int f;{ int f;
f = (g + h) - (i + j);
return f;;

}

 Arguments g, …, j in $a0, …, $a3g g, , j $, , $
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

61

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Result in $v0

Leaf Procedure ExampleLeaf Procedure Example

 MIPS code: MIPS code:
leaf_example:

addi $sp, $sp, -4
sw $s0 0($sp)

Save $s0 on stack

sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0 $t0 $t1

Procedure body

sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
ddi $ $ 4

Restore $s0

Result

addi $sp, $sp, 4
jr $ra Return

62

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non Leaf ProceduresNon-Leaf Procedures

Procedures that call other procedures Procedures that call other procedures
 For nested call, caller needs to save on

th t kthe stack:
 Its return address
 Any arguments and temporaries needed

after the call

 Restore from the stack after the call

63

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non Leaf Procedure ExampleNon-Leaf Procedure Example

C code: C code:
int fact (int n)
{ {
if (n < 1) return f;
else return n * fact(n - 1);();

}

 Argument n in $a0g $
 Result in $v0

64

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Non-Leaf Procedure
ExampleExample

 MIPS code: MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
 $ 0 0($) # tsw $a0, 0($sp) # save argument

slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
ddi $ $ 8 # 2 it f t kaddi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
l $ 0 0($) # t i i l lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
j $ # d t

65

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

jr $ra # and return

Character DataCharacter Data

 Byte-encoded character sets Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 controlg p ,

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

M t f th ld’ l h b t l b l Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

66

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Byte/Halfword OperationsByte/Halfword Operations

 Could use bitwise operations Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rtg
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
ff ffsb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

67

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

String Copy ExampleString Copy Example

C code: C code:
 Null-terminated string
id t (h [] h [])void strcpy (char x[], char y[])

{ int i;
i = 0;i = 0;
while ((x[i]=y[i])!='\0')
i += 1;;

}

 Addresses of x, y in $a0, $a1

68

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y
 i in $s0

String Copy ExampleString Copy Example

 MIPS code: MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
dd $ 3 $ 0 $ 0 # dd f [i] i $ 3add $t3, $s0, $a0 # addr of x[i] in $t3

sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1$, $,
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

69

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

jr $ra # and return

Constants

 Small constants are used quite frequently

Co s a s

 Small constants are used quite frequently
(50% of operands)

e.g., A = A + 5;g , ;
B = B + 1;
C = C - 18;

 Solutions? Why not?
 put 'typical constants' in memory and load them.
 create hard-wired registers (like $zero) for

constants like one.

70

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Constants

 MIPS Instructions:

Co s a s

 MIPS Instructions:

addi $29, $29, 4
slti $8 $18 10slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

 How do we make this work?

 Design Principle: Make the common case
fast. Which format?

71

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

How about larger constants?

 We'd like to be able to load a 32 bit constant into a register

o abou a ge co s a s?

g
 Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010
filled with zeros

 Then must get the lower order bits right, i.e.,

1010101010101010 0000000000000000

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

72

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branch AddressingBranch Addressing

Branch instructions specify Branch instructions specify
 Opcode, two registers, target address

M b h b h Most branch targets are near branch
 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

PC relative addressing PC-relative addressing
 Target address = PC + offset × 4

PC l d i t d b 4 b thi ti
73

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 PC already incremented by 4 by this time

Jump AddressingJump Addressing

 Jump (j and jal) targets could be Jump (j and jal) targets could be
anywhere in text segment

En ode f ll dd e in in t tion Encode full address in instruction
op address

6 bit 26 bits6 bits 26 bits

 (Pseudo)Direct jump addressing
Target address = PC : (address × 4) Target address = PC31…28 : (address × 4)

74

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Branching Far AwayBranching Far Away

If branch target is too far to encode If branch target is too far to encode
with 16-bit offset, assembler rewrites
the codethe code

 Example
$ $beq $s0,$s1, L1

↓
bne $s0,$s1, L2
j L1

L2

75

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

L2: …

Addressing Mode SummaryAddressing Mode Summary

76

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

SynchronizationSynchronization

 Two processors sharing an area of memory Two processors sharing an area of memory
 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

R l d d f d f Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation/ y p
 No other access to the location allowed between the read

and write

 Could be a single instruction Could be a single instruction
 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

77

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Synchronization in MIPS Synchronization in MIPS

 Load linked: ll rt, offset(rs) Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
Returns 1 in rt Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

Example: atomic swap (to test/set lock variable) Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

 $ 0 0($ 1) di i lsc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

78

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Translation and StartupTranslation and Startup

Many compilers produce
object modules directly

Static linking

79

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Assembler PseudoinstructionsAssembler Pseudoinstructions

Most assembler instructions represent Most assembler instructions represent
machine instructions one-to-one
P d i t ti fi t f th Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (register 1): assembler temporary

80

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Producing an Object ModuleProducing an Object Module

 Assembler (or compiler) translates program into Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete program
from the piecesfrom the pieces
 Header: described contents of object module
 Text segment: translated instructions

St ti d t t d t ll t d f th lif f th Static data segment: data allocated for the life of the
program

 Relocation info: for contents that depend on absolute
location of loaded programlocation of loaded program

 Symbol table: global definitions and external refs
 Debug info: for associating with source code

81

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Linking Object ModulesLinking Object Modules

 Produces an executable image Produces an executable image
1.Merges segments
2.Resolve labels (determine their addresses)2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

 Could leave location dependencies for fixing p g
by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location in

virtual memory space

82

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Loading a ProgramLoading a Program

 Load from image file on disk into memory Load from image file on disk into memory
1.Read header to determine segment sizes
2.Create virtual address space2.Create virtual address space
3.Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4.Set up arguments on stack
5.Initialize registers (including $sp, $fp, $gp)
6 J t t t ti6.Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

83

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

y

Dynamic LinkingDynamic Linking

Only link/load library procedure when it Only link/load library procedure when it
is called

Req i e p o ed e ode to be elo t ble Requires procedure code to be relocatable
 Avoids image bloat caused by static linking

of all (transitively) referenced librariesof all (transitively) referenced libraries
 Automatically picks up new library versions

84

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Lazy LinkageLazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

85

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Starting Java ApplicationsStarting Java Applications

Si l t blSimple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

86

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

C Sort ExampleC Sort Example

 Illustrates use of assembly instructions for Illustrates use of assembly instructions for
a C bubble sort function

 Swap procedure (leaf)p p ()
void swap(int v[], int k)
{

int temp;int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;v[k+1] temp;

}

 v in $a0, k in $a1, temp in $t0

87

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Procedure SwapThe Procedure Swap

swap: sll $t1 $a1 2 # $t1 = k * 4swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0 0($t1) # $t0 (temp) v[k]lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 $t0 4($t1) # [k 1] $t0 (t)sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling
routine

88

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Sort Procedure in CThe Sort Procedure in C
 Non-leaf (calls swap)(p)

void sort (int v[], int n)
{
int i, j;
for (i = 0; i < n; i += 1) {
for (j = i – 1;

j >= 0 && v[j] > v[j + 1];
j 1) {j -= 1) {

swap(v,j);
}

}}
}

 v in $a0, k in $a1, i in $s0, j in $s1

89

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Procedure BodyThe Procedure Body
move $s2, $a0 # save $a0 into $s2

move $s3, $a1 # save $a1 into $s3
Move
params

move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

addi $s1, $s0, –1 # j = i – 1

Outer loop

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

sll $t1, $s1, 2 # $t1 = j * 4

add $t2, $s2, $t1 # $t2 = v + (j * 4)
Inner loop

lw $t3, 0($t2) # $t3 = v[j]

lw $t4, 4($t2) # $t4 = v[j + 1]

slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

move $a0, $s2 # 1st param of swap is v (old $a0)

move $a1, $s1 # 2nd param of swap is j

jal swap # call swap procedure

addi $s1, $s1, –1 # j –= 1

Pass
params
& call

Inner loop

90

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

j for1tst # jump to test of outer loop

Inner loop

Outer loop

The Full Procedure
sort: addi $sp,$sp, –20 # make room on stack for 5 registers

The Full Procedure
p p g

sw $ra, 16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack, p

sw $s0, 0($sp) # save $s0 on stack

… # procedure body

…

exit1: lw $s0, 0($sp) # restore $s0 from stack, (p)

lw $s1, 4($sp) # restore $s1 from stack

lw $s2, 8($sp) # restore $s2 from stack

lw $s3,12($sp) # restore $s3 from stack

lw $ra,16($sp) # restore $ra from stack, (p)

addi $sp,$sp, 20 # restore stack pointer

jr $ra # return to calling routine

91

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Effect of Compiler OptimizationEffect of Compiler Optimization
Compiled with gcc for Pentium 4 under Linux

1 5

2

2.5

3 Relative Performance

80000

100000

120000

140000 Instruction count

0

0.5

1

1.5

none O1 O2 O3
0

20000

40000

60000

none O1 O2 O3none O1 O2 O3

120000
140000
160000
180000 Clock Cycles

none O1 O2 O3

1.5

2 CPI

20000
40000
60000
80000

100000
120000

0.5

1

92

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0
0000

none O1 O2 O3
0

none O1 O2 O3

Effect of Lang age and AlgorithmEffect of Language and Algorithm

2.5

3 Bubblesort Relative Performance

0

0.5

1

1.5

2

C/ C/O1 C/O2 C/O3 J /i t J /JITC/none C/O1 C/O2 C/O3 Java/int Java/JIT

1.5

2

2.5 Quicksort Relative Performance

0

0.5

1

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

1500

2000

2500

3000 Quicksort vs. Bubblesort Speedup

93

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0

500

1000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Lessons LearntLessons Learnt

Instruction count and CPI are not good Instruction count and CPI are not good
performance indicators in isolation
C il ti i ti iti t Compiler optimizations are sensitive to
the algorithm

 Java/JIT compiled code is significantly
faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

94

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

g g

Arrays vs PointersArrays vs. Pointers

Array indexing involves Array indexing involves
 Multiplying index by element size

Addi t b dd Adding to array base address

 Pointers correspond directly to
ddmemory addresses

 Can avoid indexing complexity

95

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Comparison of Array vs PtrComparison of Array vs. Ptr

 Multiply “strength reduced” to shift Multiply strength reduced to shift
 Array version requires shift to be inside loop

 Part of index calculation for incremented i Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as manual Compiler can achieve same effect as manual
use of pointers
 Induction variable elimination
 Better to make program clearer and safer

96

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

ARM & MIPS SimilaritiesARM & MIPS Similarities

 ARM: the most popular embedded core ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

I t/ t t M M

97

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Input/output Memory
mapped

Memory
mapped

Compare and Branch in ARMCompare and Branch in ARM

Uses condition codes for result of an Uses condition codes for result of an
arithmetic/logical instruction

Neg ti e e o o e flo Negative, zero, carry, overflow
 Compare instructions to set condition

codes without keeping the resultcodes without keeping the result

 Each instruction can be conditional
 Top 4 bits of instruction word: condition

value
C id b h i l i t ti

98

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Can avoid branches over single instructions

Instruction EncodingInstruction Encoding

99

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Alternative Architectures

Design alternative:

e a e c ec u es

 Design alternative:
 provide more powerful operations

 goal is to reduce number of instructions
executed

 danger is a slower cycle time and/or a
higher CPIhigher CPI

–“The path toward operation complexity is thus fraught with peril.
To avoid these problems, designers have moved toward simpler

100

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

instructions”

Alternative Architectures

Sometimes referred to as “RISC vs CISC”

e a e c ec u es

 Sometimes referred to as RISC vs. CISC
 virtually all new instruction sets since 1982 have

been RISCbeen RISC

 VAX: minimize code size, make assembly
language easylanguage easy

instructions from 1 to 54 bytes long!

We’ll look at PowerPC and Intel Architecture We ll look at PowerPC and Intel Architecture
(IA)

101

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Intel x86 ISAThe Intel x86 ISA

 Evolution with backward compatibility Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

8086 (1978) 16 bit t i t 8080 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations
 Paged memory mapping as well as segments

102

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

g y pp g g

The Intel x86 ISAThe Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension) instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell The Pentium Chronicles) New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers
P i 4 (2001) Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

103

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

The Intel x86 ISAThe Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructionsg g ,

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

104

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Basic x86 RegistersBasic x86 Registers

105

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

IA 32 Register RestrictionsIA-32 Register Restrictions

Registers are not “general purpose” Registers are not general purpose –
note the restrictions below

106

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Basic x86 Addressing ModesBasic x86 Addressing Modes

 Two operands per instruction Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory RegisterMemory Register

Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

107

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Address = Rbase + 2scale × Rindex + displacement

x86 Instruction Encodingx86 Instruction Encoding

Variable length Variable length
encoding

Po tfi b te pe if Postfix bytes specify
addressing mode
Prefix bytes modify Prefix bytes modify
operation
 Operand length Operand length,

repetition, locking,
…

108

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Implementing IA 32Implementing IA-32

 Complex instruction set makes Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

C l i t ti 1 Complex instructions: 1–many

 Microengine similar to RISC
 Market share makes this economically viable Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

109

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Compilers avoid complex instructions

Intel Architecturee c ec u e

“This history illustrates the impact of the “goldenThis history illustrates the impact of the golden
handcuffs” of compatibility

“ ddi f i h dd“adding new features as someone might add
clothing to a packed bag”

“an architecture that is difficult to explain and
impossible to love”

110

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

A dominant architecture: 80x86

 Saving grace: Saving grace:
 the most frequently used instructions are not too

difficult to build
 compilers avoid the portions of the architecture

that are slow

“what the 80x86 lacks in style is made up in
quantityquantity,
making it beautiful from the right perspective”

111

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

PowerPCo e C

 Indexed addressingg
 example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
 What do we have to do in MIPS?

d dd Update addressing
 update a register as part of load (for marching through arrays)
 example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

 What do we have to do in MIPS? What do we have to do in MIPS?

 Others:
 load multiple/store multipleload multiple/store multiple
 a special counter register “bc Loop”

decrement counter, if not 0 goto loop

112

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

FallaciesFallacies

 Powerful instruction  higher performance Powerful instruction  higher performance
 Fewer instructions required
 But complex instructions are hard to implement But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from
i l i isimple instructions

 Use assembly code for high performance
B t d il b tt t d li ith But modern compilers are better at dealing with
modern processors

 More lines of code  more errors and less

113

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 More lines of code  more errors and less
productivity

FallaciesFallacies

 Backward compatibility  instruction set Backward compatibility  instruction set
doesn’t change
 But they do accrete more instructions But they do accrete more instructions

x86 instruction set

114

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

PitfallsPitfalls

Sequential words are not at sequential Sequential words are not at sequential
addresses

In ement b 4 not b 1! Increment by 4, not by 1!

 Keeping a pointer to an automatic
i bl ft d tvariable after procedure returns

 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack

popped

115

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Concluding RemarksConcluding Remarks

 Design principles Design principles
1. Simplicity favors regularity
2 Smaller is faster2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises4. Good design demands good compromises

 Layers of software/hardware
 Compiler assembler hardware Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 x86

116

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 x86

Concluding RemarksConcluding Remarks

 Measure MIPS instruction executions in Measure MIPS instruction executions in
benchmark programs
 Consider making the common case fast Consider making the common case fast
 Consider compromisesInstruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
i ll l

12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

117

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Jump j, jr, jal 2% 0%

Overview of MIPS

 simple instructions all 32 bits wide

O e e o S

 simple instructions all 32 bits wide
 very structured, no unnecessary baggage
 only three instruction formats

t d h t f t

op rs rt 16 bit number

op rs rt rd shamt functR

I

 rely on compiler to achieve performance

op 26 bit addressJ

rely on compiler to achieve performance
— what are the compiler's goals?

 help compiler where we can

118

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Addresses in Branches and Jumps

 Instructions:

p

bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

 Formats:

op rs rt 16 bit numberI

op 26 bit addressJ

 Addresses are not 32 bits
— How do we handle this with load and store instructions?

119

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Addresses in Branches

 Instructions:

dd esses a c es

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

 Formats: Formats:

op rs rt 16 bit numberI

 Could specify a register (like lw and sw) and add it to address
 use Instruction Address Register (PC = program counter)

b h l l (i i l f l li) most branches are local (principle of locality)

 Jump instructions just use high order bits of PC
 address boundaries of 256 MB

120

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0] Accessed only by data transfer instructions MIPS uses byte addresses soMemory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registersp ; g

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memorystore word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
i di t

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
l $ 1 0

Compare less than constant
immediate else $s1 = 0

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

1. Immediate addressing

2. Register addressing

op rs rt Immediate

Registers

Memory

Register

3. Base addressing

op rs rt

op rs rt Address

rd . . . funct

Byte Halfword WordRegister

4 PC relative addressing

+

Memory

Word

4. PC-relative addressing
op rs rt Address

PC +

Memory

Word

5. Pseudodirect addressing

op Address

PC

122

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

Summary

 Instruction complexity is only one variable

Su a y

 Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower

clock rate

 Design Principles:
 simplicity favors regularity
 smaller is faster
 good design demands compromise
 make the common case fast

 Instruction set architecture

123

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 a very important abstraction indeed!

