
Chapter 2

Instructions: Language of the 
Computerp



Instructions:s uc o s:

Language of the Machine Language of the Machine
 More primitive than higher level 

llanguages
e.g., no sophisticated control flow

 Very restrictive
e.g., MIPS Arithmetic Instructions
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Instructions:s uc o s:

We’ll be working with the MIPS We ll be working with the MIPS 
instruction set architecture

simila to othe a chitect es de eloped similar to other architectures developed 
since the 1980's
used by NEC Nintendo Silicon Graphics used by NEC, Nintendo, Silicon Graphics, 
Sony

Design goals:  maximize performance and 
minimize cost reduce design time
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minimize cost,  reduce design time



Instructions:s uc o s:
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Instruction SetInstruction Set

 The repertoire of instructions of a computer The repertoire of instructions of a computer
 Different computers have different instruction 

sets
 But with many aspects in common

 Early computers had very simple instruction 
tsets

 Simplified implementation
 Many modern computers also have simple Many modern computers also have simple 

instruction sets
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The MIPS Instruction SetThe MIPS Instruction Set

 Used as the example throughout the book Used as the example throughout the book
 Stanford MIPS commercialized by MIPS 

Technologies (www mips com)Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics Applications in consumer electronics, 
network/storage equipment, cameras, printers, …

 Typical of many modern ISAsyp y
 See MIPS Reference Data tear-out card, and 

Appendixes B and E
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MIPS arithmeticS a e c

 All instructions have 3 operandsp
 Operand order is fixed (destination first)

Example:
C code:  A = B + C
MIPS code: add $s0, $s1, $s2  

(associated with variables by compiler)

“The natural number of operands for an operation like 
addition is three…requiring every instruction to have 

tl th d d lexactly three operands, no more and no less, 
conforms to the philosophy of keeping the hardware 
simple”
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MIPS arithmeticS a e c

Design Principle: simplicity favors Design Principle:  simplicity favors 
regularity.    Why?
Of thi li t Of course this complicates some 
things...
C code A B C DC code: A = B + C + D;

E = F - A;
MIPS code: dd $t0 $ 1 $ 2MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
b $ 4 $ 5 $ 0
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sub $s4, $s5, $s0



MIPS arithmeticS a e c

Operands must be registers only 32 Operands must be registers, only 32 
registers provided
D i P i i l ll i f t Design Principle:  smaller is faster.      
Why?
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Arithmetic OperationsArithmetic Operations

Add and subtract three operands Add and subtract, three operands
 Two sources and one destination
dd  b    #   b  add a, b, c  # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors 

regularityg y
 Regularity makes implementation simpler
 Simplicity enables higher performance at
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 Simplicity enables higher performance at 
lower cost



Registers vs. Memory

 Arithmetic instructions operands must be registers

eg s e s s. e o y

 Arithmetic instructions operands must be registers, 
— only 32 registers provided

 Compiler associates variables with registers
 What about programs with lots of variables

Control

D t th

Memory

Input

O t t

Processor I/O

Datapath Output
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Register OperandsRegister Operands

 Arithmetic instructions use register Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
Use for frequently accessed data Use for frequently accessed data

 Numbered 0 to 31
 32-bit data called a “word”

A bl Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 main memory: millions of locations
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Register Operand ExampleRegister Operand Example

C code: C code:
f = (g + h) - (i + j);

f j i $ 0 $ 4 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
b $ 0  $t0  $t1sub $s0, $t0, $t1
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Registers vs  MemoryRegisters vs. Memory

 Registers are faster to access than memory Registers are faster to access than memory
 Operating on memory data requires loads 

and stores
 More instructions to be executed

 Compiler must use registers for variables as 
h iblmuch as possible

 Only spill to memory for less frequently used 
variables

 Register optimization is important!
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Memory Organizatione o y O ga a o

 Viewed as a large single- Viewed as a large, single-
dimension array, with an 
address.

0
1

8 bits of data

8 bits of dataaddress.
 A memory address is an index 

into the array

1
2
3
4

8 bits of data

8 bits of data

8 bits of data

8 bit f d tinto the array
 "Byte addressing" means that 

the index points to a byte of

4
5
6

8 bits of data

8 bits of data

8 bits of datathe index points to a byte of 
memory.

...
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Memory Organizatione o y O ga a o

Bytes are nice but most data items use Bytes are nice, but most data items use 
larger "words"
F MIPS d i 32 bit 4 b t For MIPS, a word is 32 bits or 4 bytes.
0 32 bits of data

4
8

12

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

...
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Memory Organizatione o y O ga a o

232 bytes with byte addresses from 0 to 232 bytes with byte addresses from 0 to 
232-1
230 d ith b t dd 0 4 8 230 words with byte addresses 0, 4, 8, 
... 232-4

 Words are aligned
i.e., what are the  least 2 significant bits 
of a word address?

17

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Memory OperandsMemory Operands
 Main memory used for composite datay p

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registersLoad values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byteac add ess de es a 8 b by e

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian MIPS is Big Endian
 Most-significant byte at least address of a word
 Little Endian: least-significant byte at least address
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Memory Operand Example 1Memory Operand Example 1

 C code: C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32de 8 equ es o set o 3

 4 bytes per word

lw  $t0, 32($s3)    # load word
dd $ 1  $ 2  $t0add $s1, $s2, $t0

offset base register
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Memory Operand Example 2Memory Operand Example 2

C code: C code:
A[12] = h + A[8];

h i $ 2 b dd f A i $ 3 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32
lw  $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw  $t0, 48($s3)    # store word
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Immediate OperandsImmediate Operands

 Constant data specified in an instruction Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common case 
fast
 Small constants are common
 Immediate operand avoids a load instruction
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The Constant ZeroThe Constant Zero

MIPS register 0 ($zero) is the constant MIPS register 0 ($zero) is the constant 
0

C nnot be o e itten Cannot be overwritten

 Useful for common operations
 E.g., move between registers
add $t2, $s1, $zero
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Unsigned Binary IntegersUnsigned Binary Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: 0 to +2n – 1 Range: 0 to +2 1
 Example

0000 0000 0000 0000 0000 0000 0000 1011 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295
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2s Complement Signed Integers2s-Complement Signed Integers

Given an n bit number 0121 Given an n-bit number 0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

 Range: –2n – 1 to +2n – 1 – 1 Range: 2 to +2 1
 Example

1111 1111 1111 1111 1111 1111 1111 1100 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647
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2s Complement Signed Integers2s-Complement Signed Integers

 Bit 31 is sign bitg
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
Non negative numbers have the same unsigned and 2s Non-negative numbers have the same unsigned and 2s-
complement representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

N ti C l t d dd 1 Negation: Complement and add 1
 Complement means 1 → 0, 0 → 1
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Sign ExtensionSign Extension

 Representing a number using more bits Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
addi: extend immediate value addi: extend immediate value

 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

R li h i bi h l f Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bitp
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110
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Instructionss uc o s

 Load and store instructions
 Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0
$t0 32($ 3)sw $t0, 32($s3)

 Store word has destination last
b h d Remember arithmetic operands are registers, not 

memory!
Can’t ite dd 48($ 3) $ 2 32($ 3)
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Can’t write:  add 48($s3), $s2, 32($s3)



Our First ExampleOu  s  a p e

Can we figure out the code? Can we figure out the code?

swap(int v[], int k);
{ int temp;{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
li $2 $5 4muli $2, $5, 4

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31
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So far we’ve learned:So a  e e ea ed:

MIPS MIPS
- loading words but addressing bytes

arithmetic on registers only- arithmetic on registers only
 Instruction Meaning
add $s1 $s2 $s3 $s1 $s2 + $s3add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100] 
sw $s1, 100($s2) Memory[$s2+100] = $s1
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Machine Language

 Instructions like registers and words of data are

ac e a guage

 Instructions, like registers and words of data, are 
also 32 bits long
 Example:   add $t0, $s1, $s2

i t h b registers have numbers, $t0=9, $s1=17, $s2=18

 Instruction Format:
000000 10001 10010 01001 00000 100000

op rs rt rd shamt funct

000000 10001 10010 01001 00000 100000

 Can you guess what the field names stand for?
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Machine Language

Consider the load word and store word

ac e a guage

 Consider the load-word and store-word 
instructions,

What o ld the eg la it p inciple ha e s What would the regularity principle have us 
do?
New principle: Good design demands a New principle:  Good design demands a 
compromise
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Machine Language

Introduce a new type of instruction

ac e a guage

 Introduce a new type of instruction 
format

I t pe fo data t ansfe inst ctions I-type for data transfer instructions
 other format was R-type for register

l Example:  lw $t0, 32($s2)
35 18 9 32

 Where's the compromise?

op rs rt 16 bit number
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Representing InstructionsRepresenting Instructions

 Instructions are encoded in binary Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation code (opcode), 

register numbers, …g ,
 Regularity!

 Register numbers
$t0 $t7 ’ 8 15 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23
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MIPS R format InstructionsMIPS R-format Instructions

op rs rt rd shamt funct

 Instruction fields

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 Instruction fields
 op: operation code (opcode)

rs: first source register number rs: first source register number
 rt: second source register number

d d ti ti i t b rd: destination register number
 shamt: shift amount (00000 for now)

f f d ( d d )
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 funct: function code (extends opcode)



R format ExampleR-format Example

dd $ 0  $ 1  $ 2

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016
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MIPS I format InstructionsMIPS I-format Instructions

op rs rt constant or address

 Immediate arithmetic and load/store instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs Address: offset added to base address in rs

 Design Principle 4: Good design demands good 
compromises

Diff t f t li t d di b t ll 32 bit Different formats complicate decoding, but allow 32-bit 
instructions uniformly

 Keep formats as similar as possible

36

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Logical OperationsLogical Operations

Instructions for bitwise manipulation Instructions for bitwise manipulation
Operation C Java MIPS
Shift left << << sllShift left << << sll

Shift right >> >>> srl

Bitwise AND & & and  andiBitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ norBitwise NOT ~ ~ nor

 Useful for extracting and inserting 
groups of bits in a word
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groups of bits in a word



Shift OperationsShift Operations

op rs rt rd shamt funct

 shamt: how many positions to shift

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

 shamt: how many positions to shift 
 Shift left logical

Shift left and fill with 0 bits Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

Shift right logical Shift right logical
 Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)
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 srl by i bits divides by 2i (unsigned only)



AND OperationsAND Operations

Useful to mask bits in a word Useful to mask bits in a word
 Select some bits, clear others to 0

and $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0 0000 0000 0000 0000 0000 1100 0000 0000$t0
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OR OperationsOR Operations

Useful to include bits in a word Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2
0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0 0000 0000 0000 0000 0011 1101 1100 0000$t0
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NOT OperationsNOT Operations

Useful to invert bits in a word Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

MIPS h NOR 3 d i i MIPS has NOR 3-operand instruction
 a NOR b == NOT ( a OR b )

Register 0: always

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

Register 0: always 
read as zero

$

1111 1111 1111 1111 1100 0011 1111 1111$t0
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Conditional OperationsConditional Operations

 Branch to a labeled instruction if a condition Branch to a labeled instruction if a condition 
is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;
b    1 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1 j L1
 unconditional jump to instruction labeled L1
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Compiling If StatementsCompiling If Statements

 C code: C code:
if (i==j) f = g+h;
else f = g-h;else f = g-h;

 f, g, … in $s0, $s1, …
C il d MIPS d Assembler calculates addresses

 Compiled MIPS code:
bne $s3, $s4, Else
dd $ $ $

Assembler calculates addresses

add $s0, $s1, $s2
j   Exit

Else: sub $s0  $s1  $s2
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Else: sub $s0, $s1, $s2
Exit: …



Compiling Loop StatementsCompiling Loop Statements

 C code: C code:
while (save[i] == k) i += 1;

i i $ 3 k i $ 5 dd f i $ 6 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:

ll $ 1 $ 3 2Loop: sll  $t1, $s3, 2
add  $t1, $t1, $s6
lw   $t0, 0($t1), ( )
bne  $t0, $s5, Exit
addi $s3, $s3, 1
j    Loop
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j    Loop
Exit: …



Basic BlocksBasic Blocks

A basic block is a sequence of A basic block is a sequence of 
instructions with

No embedded b n he (e ept t end) No embedded branches (except at end)
 No branch targets (except at beginning)

A ompile identifie b i A compiler identifies basic 
blocks for optimization
An advanced processor An advanced processor 
can accelerate execution 
of basic blocks
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More Conditional 
OperationsOperations

 Set result to 1 if a condition is true Set result to 1 if a condition is true
 Otherwise, set to 0

 slt rd  rs  rt slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne Use in combination with beq, bne
slt $t0, $s1, $s2  # if ($s1 < $s2)
bne $t0, $zero, L  #   branch to L
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Branch Instruction DesignBranch Instruction Design

 Why not blt bge etc? Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work 
per instruction, requiring a slower clock
All i i li d! All instructions penalized!

 beq and bne are the common case
 This is a good design compromise

47

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



Signed vs  UnsignedSigned vs. Unsigned

 Signed comparison: slt slti Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui

Example Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt  $t0, $s0, $s1  # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1  # unsigned

 +4,294,967,295 > +1  $t0 = 0
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Procedure CallingProcedure Calling

Steps required Steps required
1. Place parameters in registers
2 T f t l t d2. Transfer control to procedure
3. Acquire storage for procedure

f d ’4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call
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Stored Program ComputersStored Program Computers

 Instructions represented in
The BIG Picture

 Instructions represented in 
binary, just like data

 Instructions and data 
stored in memory

 Programs can operate on 
programs
 e.g., compilers, linkers, …

 Binary compatibility allows Binary compatibility allows 
compiled programs to work 
on different computers
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Stored Program Concept

Fetch & Execute Cycle

S o ed og a  Co cep

 Fetch & Execute Cycle
 Instructions are fetched and put into a 

special registerspecial register
 Bits in the register "control" the 

subsequent actionssubsequent actions
 Fetch the “next” instruction and continue
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Control

Decision making instructions

Co o

 Decision making instructions
 alter the control flow,

i h th " t" i t ti t b i.e., change the "next" instruction to be 
executed
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Control

MIPS conditional branch instructions:

Co o

 MIPS conditional branch instructions:
bne $t0, $t1, Label 
beq $t0 $t1 Labelbeq $t0, $t1, Label 

E ample if (i j) h i + j Example: if (i==j) h = i + j;
bne $s0, $s1, Label
dd $ 3 $ 0 $ 1add $s3, $s0, $s1

Label: ....
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Control

 MIPS unconditional branch instructions:

Co o

 MIPS unconditional branch instructions:
j  label

 Example:
if (i!=j) beq $s4, $s5, Lab1

h=i+j; add $s3, $s4, $s5
else j Lab2j

h=i-j; Lab1: sub $s3, $s4, $s5
Lab2:...

 Can you build a simple for loop?
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So far:So a :

 Instruction Meaningg
add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100] 
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,Label Next instr. is at Label if $s4 ≠ $s5
beq $s4,$s5,Label Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

 Formats:

op rs rt rd shamt functR

op rs rt 16 bit numberI
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op 26 bit addressJ



Control Flow

 We have: beq, bne, what about Branch-if-less-than?

Co o  o

 We have:  beq, bne, what about Branch if less than?
 New instruction:

if  $s1 < $s2 then
$t0 = 1$

slt $t0, $s1, $s2 else 
$t0 = 0

 Can use this instruction to build  "blt $s1, $s2, Label" 
— can now build general control structures

 Note that the assembler needs a register to do this,Note that the assembler needs a register to do this,
— there are policy of use conventions for registers
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Policy of Use ConventionsPolicy of Use Conventions
Name Register number Usage Preserved on call?

$zero 0 the constant value 0 n.a.$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results and expression evaluation no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no 
$ 0 $ 7 16 23 saved yes$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Register 1 ($at) reserved for assembler,  26-27 for operating system



Memory LayoutMemory Layout

 Text: program code Text: program code
 Static data: global variables

 e.g., static variables in C, 
constant arrays and stringsconstant arrays and strings

 $gp initialized to address 
allowing ±offsets into this 
segmentg

 Dynamic data: heap
 E.g., malloc in C, new in Java

Stack: automatic storage Stack: automatic storage
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Local Data on the StackLocal Data on the Stack

 Local data allocated by callee Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)

59

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

 Used by some compilers to manage stack storage



Procedure Call InstructionsProcedure Call Instructions

 Procedure call: jump and link Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump registerj p g
jr $ra

 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements
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Leaf Procedure ExampleLeaf Procedure Example

C code: C code:
int leaf_example (int g, h, i, j)
{ int f;{ int f;
f = (g + h) - (i + j);
return f;;

}

 Arguments g, …, j in $a0, …, $a3g g, , j $ , , $
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0
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 Result in $v0



Leaf Procedure ExampleLeaf Procedure Example

 MIPS code: MIPS code:
leaf_example:

addi $sp, $sp, -4
sw   $s0  0($sp)

Save $s0 on stack

sw   $s0, 0($sp)
add  $t0, $a0, $a1
add  $t1, $a2, $a3
sub  $s0  $t0  $t1

Procedure body

sub  $s0, $t0, $t1
add  $v0, $s0, $zero
lw   $s0, 0($sp)
ddi $  $  4

Restore $s0

Result

addi $sp, $sp, 4
jr   $ra Return
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Non Leaf ProceduresNon-Leaf Procedures

Procedures that call other procedures Procedures that call other procedures
 For nested call, caller needs to save on 

th t kthe stack:
 Its return address
 Any arguments and temporaries needed 

after the call

 Restore from the stack after the call
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Non Leaf Procedure ExampleNon-Leaf Procedure Example

C code: C code:
int fact (int n)
{ { 
if (n < 1) return f;
else return n * fact(n - 1);( );

}

 Argument n in $a0g $
 Result in $v0
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Non-Leaf Procedure 
ExampleExample

 MIPS code: MIPS code:
fact:

addi $sp, $sp, -8     # adjust stack for 2 items
sw   $ra, 4($sp)      # save return address
   $ 0  0($ )      #  tsw   $a0, 0($sp)      # save argument

slti $t0, $a0, 1      # test for n < 1
beq  $t0, $zero, L1
addi $v0, $zero, 1    # if so, result is 1
ddi $  $  8      #    2 it  f  t kaddi $sp, $sp, 8      #   pop 2 items from stack
jr   $ra              #   and return

L1: addi $a0, $a0, -1     # else decrement n  
jal  fact             # recursive call
l    $ 0  0($ )      # t  i i l lw   $a0, 0($sp)      # restore original n
lw   $ra, 4($sp)      #   and return address
addi $sp, $sp, 8      # pop 2 items from stack
mul  $v0, $a0, $v0    # multiply to get result
j    $               # d t
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jr   $ra              # and return



Character DataCharacter Data

 Byte-encoded character sets Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 controlg p ,

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

M t f th ld’ l h b t l b l Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings
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Byte/Halfword OperationsByte/Halfword Operations

 Could use bitwise operations Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case String processing is a common case
lb rt, offset(rs)     lh rt, offset(rs)

 Sign extend to 32 bits in rtg
lbu rt, offset(rs)    lhu rt, offset(rs)

 Zero extend to 32 bits in rt
ff ffsb rt, offset(rs)     sh rt, offset(rs)

 Store just rightmost byte/halfword
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String Copy ExampleString Copy Example

C code: C code:
 Null-terminated string
id t  ( h  []  h  [])void strcpy (char x[], char y[])

{ int i;
i = 0;i = 0;
while ((x[i]=y[i])!='\0')
i += 1;;

}

 Addresses of x, y in $a0, $a1
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y
 i in $s0



String Copy ExampleString Copy Example

 MIPS code: MIPS code:
strcpy:

addi $sp, $sp, -4      # adjust stack for 1 item
sw   $s0, 0($sp)       # save $s0sw   $s0, 0($sp)       # save $s0
add  $s0, $zero, $zero # i = 0

L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
lbu  $t2, 0($t1)       # $t2 = y[i]
dd  $ 3  $ 0  $ 0     # dd  f [i] i  $ 3add  $t3, $s0, $a0     # addr of x[i] in $t3

sb   $t2, 0($t3)       # x[i] = y[i]
beq  $t2, $zero, L2    # exit loop if y[i] == 0  
addi $s0, $s0, 1       # i = i + 1$ , $ ,
j    L1                # next iteration of loop

L2: lw   $s0, 0($sp)       # restore saved $s0
addi $sp, $sp, 4       # pop 1 item from stack
jr   $ra               # and return
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jr   $ra               # and return



Constants

 Small constants are used quite frequently

Co s a s

 Small constants are used quite frequently 
(50% of operands) 

e.g., A = A + 5;g , ;
B = B + 1;
C = C - 18;

 Solutions?  Why not?
 put 'typical constants' in memory and load them.  
 create hard-wired registers (like $zero) for 

constants like one.
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Constants

 MIPS Instructions:

Co s a s

 MIPS Instructions:

addi $29, $29, 4
slti $8 $18 10slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

 How do we make this work?

 Design Principle:  Make the common case 
fast.    Which format?
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How about larger constants?

 We'd like to be able to load a 32 bit constant into a register

o  abou  a ge  co s a s?

g
 Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010
filled with zeros

 Then must get the lower order bits right, i.e.,

1010101010101010 0000000000000000

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori
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Branch AddressingBranch Addressing

Branch instructions specify Branch instructions specify
 Opcode, two registers, target address

M b h b h Most branch targets are near branch
 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

PC relative addressing PC-relative addressing
 Target address = PC + offset × 4

PC l d i t d b 4 b thi ti
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 PC already incremented by 4 by this time



Jump AddressingJump Addressing

 Jump (j and jal) targets could be Jump (j and jal) targets could be 
anywhere in text segment

En ode f ll dd e in in t tion Encode full address in instruction
op address

6 bit 26 bits6 bits 26 bits

 (Pseudo)Direct jump addressing
Target address = PC : (address × 4) Target address = PC31…28 : (address × 4)
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Branching Far AwayBranching Far Away

If branch target is too far to encode If branch target is too far to encode 
with 16-bit offset, assembler rewrites 
the codethe code

 Example
$ $beq $s0,$s1, L1

↓
bne $s0,$s1, L2
j L1

L2
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L2: …



Addressing Mode SummaryAddressing Mode Summary
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SynchronizationSynchronization

 Two processors sharing an area of memory Two processors sharing an area of memory
 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

R l d d f d f Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation/ y p
 No other access to the location allowed between the read 

and write

 Could be a single instruction Could be a single instruction
 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions
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Synchronization in MIPS Synchronization in MIPS 

 Load linked: ll rt, offset(rs) Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
Returns 1 in rt Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

Example: atomic swap (to test/set lock variable) Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll  $t1,0($s1)    ;load linked

  $ 0 0($ 1)     di i lsc  $t0,0($s1)    ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4
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Translation and StartupTranslation and Startup

Many compilers produce 
object modules directly

Static linking
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Assembler PseudoinstructionsAssembler Pseudoinstructions

Most assembler instructions represent Most assembler instructions represent 
machine instructions one-to-one
P d i t ti fi t f th Pseudoinstructions: figments of the 
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (register 1): assembler temporary
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Producing an Object ModuleProducing an Object Module

 Assembler (or compiler) translates program into Assembler (or compiler) translates program into 
machine instructions

 Provides information for building a complete program 
from the piecesfrom the pieces
 Header: described contents of object module
 Text segment: translated instructions

St ti d t t d t ll t d f th lif f th Static data segment: data allocated for the life of the 
program

 Relocation info: for contents that depend on absolute 
location of loaded programlocation of loaded program

 Symbol table: global definitions and external refs
 Debug info: for associating with source code
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Linking Object ModulesLinking Object Modules

 Produces an executable image Produces an executable image
1.Merges segments
2.Resolve labels (determine their addresses)2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

 Could leave location dependencies for fixing p g
by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location in 

virtual memory space
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Loading a ProgramLoading a Program

 Load from image file on disk into memory Load from image file on disk into memory
1.Read header to determine segment sizes
2.Create virtual address space2.Create virtual address space
3.Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4.Set up arguments on stack
5.Initialize registers (including $sp, $fp, $gp)
6 J t t t ti6.Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall
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Dynamic LinkingDynamic Linking

Only link/load library procedure when it Only link/load library procedure when it 
is called

Req i e p o ed e ode to be elo t ble Requires procedure code to be relocatable
 Avoids image bloat caused by static linking 

of all (transitively) referenced librariesof all (transitively) referenced libraries
 Automatically picks up new library versions
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Lazy LinkageLazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code
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Starting Java ApplicationsStarting Java Applications

Si l t blSimple portable 
instruction set for 

the JVM

Interprets 
bytecodes

Compiles 
bytecodes of 
“hot” methods 

into native 
code for host 

machine
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C Sort ExampleC Sort Example

 Illustrates use of assembly instructions for Illustrates use of assembly instructions for 
a C bubble sort function

 Swap procedure (leaf)p p ( )
void swap(int v[], int k)
{

int temp;int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;v[k+1]  temp;

}

 v in $a0, k in $a1, temp in $t0
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The Procedure SwapThe Procedure Swap

swap: sll $t1  $a1  2   # $t1 = k * 4swap: sll $t1, $a1, 2   # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

#   (address of v[k])

lw $t0  0($t1)    # $t0 (temp)  v[k]lw $t0, 0($t1)    # $t0 (temp) = v[k]

lw $t2, 4($t1)    # $t2 = v[k+1]

sw $t2, 0($t1)    # v[k] = $t2 (v[k+1])

 $t0  4($t1)    # [k 1]  $t0 (t )sw $t0, 4($t1)    # v[k+1] = $t0 (temp)

jr $ra            # return to calling 
routine
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The Sort Procedure in CThe Sort Procedure in C
 Non-leaf (calls swap)( p)

void sort (int v[], int n)
{
int i, j;
for (i = 0; i < n; i += 1) {
for (j = i – 1;

j >= 0 && v[j] > v[j + 1];
j  1) {j -= 1) {

swap(v,j);
}

}}
}

 v in $a0, k in $a1, i in $s0, j in $s1
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The Procedure BodyThe Procedure Body
move $s2, $a0           # save $a0 into $s2

move $s3, $a1           # save $a1 into $s3
Move
params

move $s0, $zero         # i = 0

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n)

addi $s1, $s0, –1       # j = i – 1

Outer loop

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0)

bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0)

sll  $t1, $s1, 2        # $t1 = j * 4

add  $t2, $s2, $t1      # $t2 = v + (j * 4)
Inner loop

lw   $t3, 0($t2)        # $t3 = v[j]

lw   $t4, 4($t2)        # $t4 = v[j + 1]

slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3

beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3

move $a0, $s2           # 1st param of swap is v (old $a0)

move $a1, $s1           # 2nd param of swap is j

jal  swap               # call swap procedure

addi $s1, $s1, –1       # j –= 1

Pass
params
& call

Inner loop
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j    for2tst            # jump to test of inner loop

exit2:   addi $s0, $s0, 1        # i += 1

j    for1tst            # jump to test of outer loop

Inner loop

Outer loop



The Full Procedure
sort:    addi $sp,$sp, –20      # make room on stack for 5 registers

The Full Procedure
p p g

sw $ra, 16($sp)        # save $ra on stack

sw $s3,12($sp)         # save $s3 on stack

sw $s2, 8($sp)         # save $s2 on stack

sw $s1, 4($sp)         # save $s1 on stack, p

sw $s0, 0($sp)         # save $s0 on stack

…                      # procedure body

…

exit1: lw $s0, 0($sp)  # restore $s0 from stack, ( p)

lw $s1, 4($sp)         # restore $s1 from stack

lw $s2, 8($sp)         # restore $s2 from stack

lw $s3,12($sp)         # restore $s3 from stack

lw $ra,16($sp)         # restore $ra from stack, ( p)

addi $sp,$sp, 20       # restore stack pointer

jr $ra                 # return to calling routine
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Effect of Compiler OptimizationEffect of Compiler Optimization
Compiled with gcc for Pentium 4 under Linux
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Effect of Lang age and AlgorithmEffect of Language and Algorithm

2.5

3 Bubblesort Relative Performance

0

0.5

1

1.5

2

C/ C/O1 C/O2 C/O3 J /i t J /JITC/none C/O1 C/O2 C/O3 Java/int Java/JIT

1.5

2

2.5 Quicksort Relative Performance

0

0.5

1

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

1500

2000

2500

3000 Quicksort vs. Bubblesort Speedup

93

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY

0

500

1000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT



Lessons LearntLessons Learnt

Instruction count and CPI are not good Instruction count and CPI are not good 
performance indicators in isolation
C il ti i ti iti t Compiler optimizations are sensitive to 
the algorithm

 Java/JIT compiled code is significantly 
faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!
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Arrays vs  PointersArrays vs. Pointers

Array indexing involves Array indexing involves
 Multiplying index by element size

Addi t b dd Adding to array base address

 Pointers correspond directly to 
ddmemory addresses

 Can avoid indexing complexity
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Comparison of Array vs  PtrComparison of Array vs. Ptr

 Multiply “strength reduced” to shift Multiply strength reduced  to shift
 Array version requires shift to be inside loop

 Part of index calculation for incremented i Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as manual Compiler can achieve same effect as manual 
use of pointers
 Induction variable elimination
 Better to make program clearer and safer
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ARM & MIPS SimilaritiesARM & MIPS Similarities

 ARM: the most popular embedded core ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

I t/ t t M M
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Input/output Memory 
mapped

Memory 
mapped



Compare and Branch in ARMCompare and Branch in ARM

Uses condition codes for result of an Uses condition codes for result of an 
arithmetic/logical instruction

Neg ti e e o o e flo Negative, zero, carry, overflow
 Compare instructions to set condition 

codes without keeping the resultcodes without keeping the result

 Each instruction can be conditional
 Top 4 bits of instruction word: condition 

value
C id b h i l i t ti
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 Can avoid branches over single instructions



Instruction EncodingInstruction Encoding
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Alternative Architectures

Design alternative:

e a e c ec u es

 Design alternative:
 provide more powerful operations

 goal is to reduce number of instructions 
executed

 danger is a slower cycle time and/or a 
higher CPIhigher CPI

–“The path toward operation complexity is thus fraught with peril.  
To avoid these problems, designers have moved toward simpler 
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instructions”



Alternative Architectures

Sometimes referred to as “RISC vs CISC”

e a e c ec u es

 Sometimes referred to as RISC vs. CISC
 virtually all new instruction sets since 1982 have 

been RISCbeen RISC

 VAX:  minimize code size, make assembly 
language easylanguage easy

instructions from 1 to 54 bytes long!

We’ll look at PowerPC and Intel Architecture We ll look at PowerPC and Intel Architecture 
(IA)
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The Intel x86 ISAThe Intel x86 ISA

 Evolution with backward compatibility Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

8086 (1978) 16 bit t i t 8080 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations
 Paged memory mapping as well as segments
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The Intel x86 ISAThe Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension) instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell The Pentium Chronicles) New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated 

registers
P i 4 (2001) Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions
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The Intel x86 ISAThe Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructionsg g ,

 If Intel didn’t extend with compatibility, its 
competitors would!
 Technical elegance ≠ market success
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Basic x86 RegistersBasic x86 Registers
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IA 32 Register RestrictionsIA-32 Register Restrictions

Registers are not “general purpose” Registers are not general purpose  –
note the restrictions below
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Basic x86 Addressing ModesBasic x86 Addressing Modes

 Two operands per instruction Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory RegisterMemory Register

Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
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 Address =  Rbase + 2scale × Rindex + displacement



x86 Instruction Encodingx86 Instruction Encoding

Variable length Variable length 
encoding

Po tfi b te pe if Postfix bytes specify 
addressing mode
Prefix bytes modify Prefix bytes modify 
operation
 Operand length Operand length, 

repetition, locking, 
…
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Implementing IA 32Implementing IA-32

 Complex instruction set makes Complex instruction set makes 
implementation difficult
 Hardware translates instructions to simpler Hardware translates instructions to simpler 

microoperations
 Simple instructions: 1–1

C l i t ti 1 Complex instructions: 1–many

 Microengine similar to RISC
 Market share makes this economically viable Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions
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Compilers avoid complex instructions



Intel Architecturee  c ec u e

“This history illustrates the impact of the “goldenThis history illustrates the impact of the golden 
handcuffs” of compatibility

“ ddi f i h dd“adding new features as someone might add 
clothing to a packed bag”

“an architecture that is difficult to explain and 
impossible to love” 
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A dominant architecture:  80x86

 Saving grace: Saving grace:
 the most frequently used instructions are not too 

difficult to build
 compilers avoid the portions of the architecture 

that are slow

“what the 80x86 lacks in style is made up in 
quantityquantity, 
making it beautiful from the right perspective”
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PowerPCo e C

 Indexed addressingg
 example:       lw $t1,$a0+$s3  #$t1=Memory[$a0+$s3]
 What do we have to do in MIPS? 

d dd Update addressing
 update a register as part of load (for marching through arrays)
 example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

 What do we have to do in MIPS? What do we have to do in MIPS?

 Others:
 load multiple/store multipleload multiple/store multiple
 a special counter register  “bc Loop”  

decrement counter, if not 0 goto loop

112

Electrical & Computer Engineering
School of Engineering

THE COLLEGE OF NEW JERSEY



FallaciesFallacies

 Powerful instruction  higher performance Powerful instruction  higher performance
 Fewer instructions required
 But complex instructions are hard to implement But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from 
i l i isimple instructions

 Use assembly code for high performance
B t d il b tt t d li ith But modern compilers are better at dealing with 
modern processors

 More lines of code  more errors and less
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 More lines of code  more errors and less 
productivity



FallaciesFallacies

 Backward compatibility  instruction set Backward compatibility  instruction set 
doesn’t change
 But they do accrete more instructions But they do accrete more instructions

x86 instruction set
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PitfallsPitfalls

Sequential words are not at sequential Sequential words are not at sequential 
addresses

In ement b 4 not b 1! Increment by 4, not by 1!

 Keeping a pointer to an automatic 
i bl ft d tvariable after procedure returns

 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack 

popped
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Concluding RemarksConcluding Remarks

 Design principles Design principles
1. Simplicity favors regularity
2 Smaller is faster2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises4. Good design demands good compromises

 Layers of software/hardware
 Compiler assembler hardware Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 x86
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 x86



Concluding RemarksConcluding Remarks

 Measure MIPS instruction executions in Measure MIPS instruction executions in 
benchmark programs
 Consider making the common case fast Consider making the common case fast
 Consider compromisesInstruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi, 
i ll l

12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt, 
slti, sltiu

34% 8%
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Jump j, jr, jal 2% 0%



Overview of MIPS

 simple instructions all 32 bits wide

O e e  o  S

 simple instructions all 32 bits wide
 very structured, no unnecessary baggage
 only three  instruction formats

t d h t f t

op rs rt 16 bit number

op rs rt rd shamt functR

I

 rely on compiler to achieve performance

op 26 bit addressJ

rely on compiler to achieve performance
— what are  the compiler's goals?

 help compiler where we can
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Addresses in Branches and Jumps

 Instructions:

p

bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if  $t4 = $t5
j Label Next instruction is at Label 

 Formats:

op rs rt 16 bit numberI

op 26 bit addressJ

 Addresses are not 32 bits 
— How do we handle this with load and store instructions?
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Addresses in Branches

 Instructions:

dd esses  a c es

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

 Formats: Formats:

op rs rt 16 bit numberI

 Could specify a register (like lw and sw) and add it to address
 use Instruction Address Register (PC = program counter)

b h l l ( i i l f l li ) most branches are local (principle of locality)

 Jump instructions just use high order bits of PC 
 address boundaries of 256 MB
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To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform 

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0] Accessed only by data transfer instructions MIPS uses byte addresses soMemory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registersp ; g

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw  $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memorystore word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if ($s1 == $s2) go to             
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2) go to             
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          
else $s1 = 0

Compare less than; for beq, bne

set less than 
i di t

slti  $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          
l $ 1 0

Compare less than constant
immediate else $s1 = 0

jump j    2500 go to 10000 Jump to target address
Uncondi- jump register jr   $ra go to $ra For switch, procedure return
tional jump jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call



1. Immediate addressing

2. Register addressing

op rs rt Immediate

Registers

Memory

Register

3. Base addressing

op rs rt

op rs rt Address

rd . . . funct

Byte Halfword WordRegister

4 PC relative addressing

+

Memory

Word

4. PC-relative addressing
op rs rt Address

PC +

Memory

Word

5. Pseudodirect addressing

op Address

PC
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Summary

 Instruction complexity is only one variable

Su a y

 Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower 

clock rate

 Design Principles:
 simplicity favors regularity
 smaller is faster
 good design demands compromise
 make the common case fast

 Instruction set architecture
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 a very important abstraction indeed!


