
1

ELC 363 - LABORATORY #6

MIPS IMPLEMENTATION

In this laboratory, the single cycle MIPS architecture will be implemented and verified in Verilog® using

an as high as possible level of abstraction design methodology. This implementation will only have to

support the following instructions (simplified ISA):

 memory-reference instructions:

 lw, sw

 arithmetic-logical instructions:

 add, sub, and, or, slt

 control flow instructions:

 beq

Since the processor has been architected already (this is an implementation job), the design approach

should be bottoms-up using the ALU that you designed in LABORATORY #5.

The next step is to build the register file using Fig. 1 and Fig. 2 as a guide. In Fig. 2, the AND gates

should be 3-input AND gates with the third input connected to the CLOCK.

2

Fig. 1. Register File Architecture (a)

Fig. 2. Register File Architecture (b)

Built using D flip- flops

M�
u�
x

Register 0
Register 1

Register n – 1
Register n

M�
u�
x

Read data 1

Read data 2

Read register�
number 1

Read register�
number 2

Read register�
number 1 Read�

data 1

Read�
data 2

Read register�
number 2

Register file
Write�
register

Write�
data Write

Note: we still use the real clock to
determine when to write

n-to-1�
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

3

At this point, the overall architecture can be implemented per Fig. 3. Note that the memories do not

belong inside the implementation of the processor and need to be developed as separate modules, and

connected to the processor in the test bench. The memories, as well as the register file, are of the

asynchronous read, synchronous write type. The Verilog® Reference Sheet handed of in class contains a

memory declaration that can be built on. The control for the one cycle implementation can be inferred from

Fig. 4 and Fig. 5.

Fig. 3. Overall Architecture

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M�
u�
x

0

1

Control

Add ALU�
result

M�
u�
x

0

1

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

Shift�
left 2

M�
u�
x

1

ALU�
result

Zero

Data�
memory

Write�
data

Read�
data

M�
u�
x

1

Instruction [15– 11]

ALU�
control

ALU
Address

4

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Fig. 4. ALU Control Truth Table

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Fig. 5. Main Control Truth Table

The next step is to write a test bench to verify the design. The test bench should connect the CPU and the

memories, initialize the program memory, and provide a clock and a reset. The memory should be

initialized with a program that should have been hand assembled to exercise all the instructions in the

simplified ISA at least once. The Verilog® Reference Sheet handed of in class and the Verilog®

presentation discussed in class contains examples of clock declarations, initial memory loading, and others

that can be used as starting points in this laboratory. Use non-blocking assignments and a small propagation

delay for synchronous assignments. The test bench will have to run long enough (for enough clock cycles)

for the program to execute. The minimum deliverables for this laboratory are the following:

a) All Verilog® code files (design code files and test-bench code file).

5

b) Test program in MIPS assembly language.

c) Initial program memory load file (this is the assembled test program in machine language).

d) Waveforms that show the state of the CPU (PC and pertinent registers), and the pertinent memory

contents after each instruction has been executed.

The work should be done independently by each team. A report with, at a minimum, all the items

requested to be turned in is to be submitted by student by the due date discussed in class. All reports should

be written in a word processor and similar productivity computer tools; no hand written reports will be

accepted.

GRADING RUBRIC: The total grade for this assignment will be 28 points normalized to 100% for your

report. Part (a) above will be worth 12 points, parts (b) and (c) will be worth 1 point each, and part (d) will

be worth 8 points. The rest of your report will be worth 6 points, for a total of 28 points.

REPORT FORMAT: Free form, but it must be:

a. One report per team.

b. Have a cover sheet with identification: Title, Class, Your Name, etc.

c. COMPLETELY word-processed

d. Double spaced

e. 12 pt Times New Roman font

f. Fully justified (optional)

g. Outline of the body of the report: Introduction, Problem Description, Results, Discussion,

and Conclusions.

