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Data Encryption Routines for the PIC18
INTRODUCTION

This Application Note covers four encryption
algorithms: AES, XTEA, SKIPJACK® and a simple
encryption algorithm using a pseudo-random binary
sequence generator. The science of cryptography
dates back to  ancient Egypt. In today’s era of informa-
tion technology where data is widely accessible,
sensitive material, especially electronic data, needs to
be encrypted for the user’s protection. For example, a
network-based card entry door system that logs the
persons who have entered the building may be suscep-
tible to an attack where the user information can be
stolen or manipulated by sniffing or spoofing the link
between the processor and the memory storage
device. If the information is encrypted first, it has a
better chance of remaining secure. Many encryption
algorithms provide protection against someone reading
the hidden data, as well as providing protection against
tampering. In most algorithms, the decryption process
will cause the entire block of information to be
destroyed if there is a single bit error in the block prior
to decryption.

ENCRYPTION MODULE OVERVIEW

• Four algorithms to choose from, each with their 
own benefits

• Advanced Encryption Standard (AES)
- Modules available in C, Assembly and 

Assembly written for C
- Allows user to decide to include encoder, 

decoder or both
- Allows user to pre-program a decryption key 

into the code or use a function to calculate 
the decryption key

• Tiny Encryption Algorithm version 2 (XTEA)
- Modules available in C and Assembly
- Programmable number of iteration cycles

• SKIPJACK
- Module available in C

• Pseudo-random binary sequence generator XOR 
encryption
- Modules available in C and Assembly

- Allows user to change the feedback taps at 
run-time

- KeyJump breaks the regular cycle of the to 
increase the variability of the sequence

• Out-of-the-box support for MPLAB® C 18
• Various compiling options to customize routines 

for a specific application
- Available as a Microchip Application 

Maestro™ module to simplify customization

Author: David Flowers
Microchip Technology Inc.
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AES

Overview/History/Background

The Advanced Encryption Standard (AES) is a means
of encrypting and decrypting data adopted by the
National Institute of Standards and Technology (NIST)
on October 2, 2000.  In the late 1990s, NIST held a
contest to initiate the development of encryption
algorithms that would replace the Data Encryption
Standard (DES). The contest tested the algorithms’
security and execution speed to determine which would
be named the AES.  The algorithm chosen is called the
“Rijndael” algorithm after its two designers, Joan
Daemen and Vincent Rijmen of Belgium. AES is a
symmetric block cipher that utilizes a secret key to
encrypt data. The implementation of AES in this
application note is based on a 16-byte block of data and
a 16-byte key size.
DS00953A-page 2  2005 Microchip Technology Inc.
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ENCRYPTION

FIGURE 1: AES ENCRYPT FLOWCHART
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There are five basic subdivisions of the encryption
flowchart. A detailed explanation of each will follow.
The number of rounds needed in the transformation is
taken from the following table.

This implementation of AES uses a 16-byte block and a
16-byte key and thus uses 10 rounds of encryption. On
the last encryption round, the mix column subdivision
is left out. The structures of the key and data blocks are
shown below.

TABLE 1: KEY MATRIX:

TABLE 2: DATA MATRIX:

To fit into the data matrix structure, the plain text to be
encrypted needs to be broken into the appropriate size
blocks, with any leftover space being padded. For
example, take the following quote from “A Tale of Two
Cities”, by Charles Dickens. “It was the best of times, it
was the worst of times, …”. Broken into 16-byte blocks,
the data would now look similar to this:

EXAMPLE 1: PLAIN TEXT DIVIDED INTO 16-BYTE BLOCKS

Finally a key must be selected that is 128-bits long.  For
all of the examples in this document, the key will be
[Charles Dickens].

With a key selected and the data sectioned off into
appropriate size blocks, the encryption cycle may now
begin.

16-Byte 
Block

24-Byte 
Block

32-Byte 
Block

16-byte key 10* 12 14

24-byte key 12 12 14

32-byte key 14 14 14

* Used in this implementation.

Key [0] Key [4] Key [8] Key [12] Key [16] Key [20] Key [24] Key [28]

Key [1] Key [5] Key [9] Key [13] Key [17] Key [21] Key [25] Key [29]

Key [2] Key [6] Key [10] Key [14] Key [18] Key [22] Key [26] Key [30]

Key [3] Key [7] Key [11] Key [15] Key [19] Key [23] Key [27] Key [31]

Data [0] Data [4] Data [8] Data [12] Data [16] Data [20] Data [24] Data [28]

Data [1] Data [5] Data [9] Data [13] Data [17] Data [21] Data [25] Data [29]

Data [2] Data [6] Data [10] Data [14] Data [18] Data [22] Data [26] Data [30]

Data [3] Data [7] Data [11] Data [15] Data [19] Data [23] Data [27] Data [31]

It was the best of times, it was  the worst of ti mes, ... tuvwxyz( 1)

Note 1: If any of the blocks do not fit into the correct size matrix, the values must be padded at the end of the block. 
In this case, “tuvwxyz” is added to the end of the quote to complete the last block.
DS00953A-page 4  2005 Microchip Technology Inc.
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S-Table (Encryption Substitution Table):

S-Table Substitution is a direct table lookup and
replacement of the data. Below is the C code for this
procedure:

for(i=0;i<BLOCKSIZE;i++)
{

block[i]=STable[block[i]];
}

The values of the table are defined in the following
chart.

TABLE 3: S-BOX OR ENCRYPTION SUBSTITUTION TABLE (VALUES IN HEXADECIMAL)  
y

00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

x

00 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

01 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

02 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

03 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

04 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

05 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

06 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

07 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

08 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

09 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

0A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

0B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

0C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

0D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

0E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

0F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16
 2005 Microchip Technology Inc. DS00953A-page 5
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Xtime

xtime(a) is a predefined linear feedback shift register
that repeats every 51 cycles. The operation is defined
as:

if(a<0x80)
{

a<<=1;
}
else
{

       a=a<<1)^0x1b;
}

Key Schedule

Each round of AES uses a different encryption key
based on the previous encryption key. An example
follows that takes a given key and calculates the next
round’s key.

EXAMPLE 2: KEY GENERATION

Given the generic key:

The key scheduling goes as follows:

1. Column 0 is XORed with the S_Table lookup of
column 3:

2. K0 is XORed with Rcon

K0 ^= Rcon;

3. Rcon is updated with the xtime of Rcon

Rcon = xtime(Rcon);

(the starting value of Rcon is 0x01 for encoding)

4. Column 1 is XORed with column 0:

5. Column 2 is XORed with column 1:

6. Column 3 is XORed with column 2:

Key Addition:

Key addition is defined as each byte of the key XORed
with each of the corresponding data bytes. The key
addition process is the same for both the encryption
and decryption processes. The following is a C-code
example:

for(i=0;i<16;i++)
{
data[i] ^= key[i];
}

Row Shift

Row shift is a cyclical shift to the left of the rows in the
data block according to the table below:

TABLE 4: ENCRYPTION CYCLICAL 
SHIFT TABLE 

Note that this transformation is different for encryption
and decryption.

EXAMPLE 3: TRANSFORMATION

Given the original data:

The results of the transformation would be as follows:

K1 K4 K8 K12

K2 K5 K9 K13

K3 K6 K10 K14

K4 K7 K11 K15

K0 ^= S_Table[K13]

K1 ^= S_Table[K14]

K2 ^= S_Table[K15]

K3 ^= S_Table[K12]

K4 ^= K0

K5 ^= K1

K6 ^= K2

K7 ^= K3

K8 ^= K4

K9 ^= K5

K10 ^= K6

K11 ^= K7

K12 ^= K8

K13 ^= K9

K14 ^= K10

K15 ^= K11

# shifts 
of row 0

# shifts 
of row 1

# shifts 
of row 2

# shifts 
of row 3

16-byte block 0 1 2 3

24-byte block 0 1 2 3

32-byte block 0 1 3 4

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 4 8 12

5 9 13 1

10 14 2 6

15 3 7 11
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mix column

Chapter 2, Section 4.2.3 of the AES specification
defines the mix column transformation. In this opera-
tion, a matrix c(x) is cross-multiplied by the input vector
(a(x)) using the special rules of Polynomials with coeffi-
cients in GF(28) to form the output vector b(x).

The special rules for multiplication equate to the following:

a • 1 = a

a • 2 = xtime(a)

a • 3 = a ⊕  xtime(a)

a • 4 = xtime(xtime(a))

a • 5 = a ⊕  xtime(xtime(a))

...

The first row of the resulting multiplication would be:

EXAMPLE 4:

Refer to Application Note 821, “Advanced Encryption
Standard Using the PIC16XXX” (DS00821), available
at www.microchip.com, for a full example of this
multiplication.

EXAMPLE 5: AES ENCRYPTION EXAMPLE:

b0
b1
b2
b3

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

a0
a1
a2
a3

= X

FIXED MATRIX c(x)

b[0]= xtime(a[0]) ⊕  (a[1] ⊕  xtime(a[1])) ⊕  a[2] ⊕  a[3](1,2)

Note 1: ⊕  stands for XOR

2: The members of the multiplication are XORed together rather then added together as they would in
regular matrix multiplication.

Plain text: [It was the best ][of times, it was][the worst of ti][mes, ... tuvwxyz(1)]

Key: [Charles Dickens.]

Plain hex: [0x49742077617320746865206265737420](2,3)…

Cipher hex: [0x3FD869084483504CA70E246064DD76CA]…

Note 1: The line has been padded with “tuvwxyz” so that the data fits in the block.

2: Only first block results shown.

3: In between each block, the key must be reset or the change in key must be taken into consideration
when decryption begins.
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DECRYPTION

The subdivisions of the decryption algorithm are similar
to those of the encryption algorithm, with most being
the inverse operation. One major difference, however,
is in the setup preceding the decryption. The decryption
key is different than the encryption key and must be
loaded correctly. The decryption key can be calculated
by running through the encryption key schedule the
appropriate number of rounds. If, during encryption, the
key is not reset between blocks, the decryption key will
then have to adjust accordingly. The value of Rcon
must also be set differently for the decryption process.
The value of 0x36 is used for 10 rounds. This is deter-
mined by running the encryption key schedule routine
for the appropriate number of rounds.

FIGURE 2: DECRYPT FLOWCHART
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Decode Key Schedule
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Si-Table (decryption lookup table):

The Si-Table is similar to the S-Table in function and provides the inverse loop-up results.

TABLE 5: Si-BOX OR DECRYPTION SUBSTITUTION TABLE (VALUES IN HEXADECIMAL)

y

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

x

00 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

10 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

20 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

30 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

40 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

50 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

60 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

70 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

80 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

90 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A0 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B0 FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C0 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D0 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E0 A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

F0 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D
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Key Schedule

Each round of AES decryption uses the same key that
was used to encrypt the data. The key for the next
iteration can be determined from the previous decryp-
tion key by performing the inverse operation to the
encryption key schedule. To obtain the decryption key
from the encryption key, cycle the appropriate amount
of times through the encryption key schedule. At the
end of an encryption cycle, the value of the key at that
point is the correct decryption key, so this value can be
saved, recalculated later or pre-calculated and stored
in the system.

Given the generic key:

The key scheduling goes as follows:

Starting from the decryption key:

1. Column 3 is XORed with column 2:

2. Column 2 is XORed with column 1:

3. Column 1 is XORed with column 0:

K1 K4 K8 K12

K2 K5 K9 K13

K3 K6 K10 K14

K4 K7 K11 K15

K12 ^= K8

K13 ^= K9

K14 ^= K10

K15 ^= K11

K8 ^= K4

K9 ^= K5

K10 ^= K6

K11 ^= K7

K4 ^= K0

K5 ^= K9

K6 ^= K10

K7 ^= K11
DS00953A-page 10  2005 Microchip Technology Inc.
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4. Column 0 is XORed with the S-Table lookup of
column 3 (Note: This uses the S-Table and not
the Si-Table):

5. K0 is XORed with Rcon
K0 ^= Rcon;

6. Rcon is updated with the inverse xtime of Rcon

Row Shift

Row shift is a cyclical shift to the left of the rows in the
data based on the below table:

Note that this transformation is different for encryption
and decryption. Also note that the results of this
transformation are equivalent to row shift transforma-
tion in the encryption if the blocks are shifted to the right
instead of to the left.

EXAMPLE 6: ROW SHIFT

Given the original data:

The results of the transformation would be as follows:

Inverse Mix Column:

The inverse mix column operation differs from the mix
column operation by only the matrix c(x). 

(Note: all values are in hexadecimal)

The operation a[0] • 0x0E ⊕ … is very calculation inten-
sive for an 8-bit processor.  There are several different
methods of calculating these numbers to reduce the
mathematical load. The method chosen for this imple-
mentation is a simple lookup table of the xtime(a),
xtime(xtime(a)) and xtime(xtime(xtime(a))) values. 

K4 ^= S_Table [K13]

K5 ^= S_Table [K14]

K6 ^= S_Table [K15]

K7 ^= S_Table [K16]

# shifts 
of row 0

# shifts 
of row 1

# shifts 
of row 2

# shifts 
of row 3

16-byte block 0 3 2 1

24-byte block 0 5 4 3

32-byte block 0 7 5 4

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 4 8 12

13 1 5 9

10 14 2 6

7 11 15 3

if(Rcon & 0x01)
{

Rcon = 0x80;
}
else
{

Rcon >>=1;
}

Note: The starting value of Rcon is 0x36 for
decoding using a 128-bit key

b0
b1
b2
b3

0E
09
0D
0B

0B
0E
09
0D

0D
0B
0E
09

09
0D
0B
0E

a0
a1
a2
a3

= X

FIXED MATRIX c(x)
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Overview of Routines

AESEncode

This function encrypts the input data with the input key.

Syntax

void Encode(unsigned char* block, unsigned char* key)

Parameters

Block – block of data to encrypt,
key – the key used to encrypt

Return Values

None

Pre-condition

Block and key preloaded with the correct values

Side-effects

Values in block have changed to the encrypted version, Key contains the decryption key for that block

Remarks

None

Example: Usage of Encode

C
...
AESEncode(block,key);
...
Assembly
...
mov1w 0x34
movwf key+0
mov1w 0x12
movwf key+1
...
movff data+0,block+0
movff data+1,block+1
...
call AESEncode
DS00953A-page 12  2005 Microchip Technology Inc.
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AESDecode

This function decrypts the input data with the input decryption key.

Syntax

void Decode(unsigned char* block, unsigned char* key)

Parameters

Block – block of data to decrypt,
key – the key used to decrypt

Return Values

None

Pre-condition

Block and key preloaded with the correct values

Side Effects

Values in block have changed to the decrypted version, Key contains the original encryption key for that block

Remarks

None

Example: Usage of Decode

C

...

AESDecode(block,key);

Assembly

...

mov1w 0x34
movwf key+0
mov1w 0x12
movwf key+1
...
movff data+0,block+0
movff data+1,block+1
...
call AESDecode
 2005 Microchip Technology Inc. DS00953A-page 13
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AESCalcDecodeKey

This function calculates the decryption key for a block of data from the encryption key.

Syntax

void Decode(unsigned char* block, unsigned char* key)

Parameters

key – the key used to encrypt

Return Values

None

Pre-condition

key preloaded with the correct values

Side Effects

Key contains the decryption key for that block

Remarks

None

Example: Usage of calcDecodeKey

C
...
AEScalcDecodeKey(key);

Assembly
...
mov1w 0x34
movwf key+0
mov1w 0x12
movwf key+1
...
call AEScaleDecodeKey
DS00953A-page 14  2005 Microchip Technology Inc.
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XTEA

Overview/History/Background

Tiny Encryption Algorithm version 2 (XTEA) is an
encryption algorithm that gets its fame from its size.
XTEA is an adaptation of the original algorithm (TEA)
after a weakness was found in its structure.  XTEA’s
authors are David Wheeler and Roger Needham of the
Cambridge Computer Laboratory.  XTEA gets its
security from the number of encryption iterations it
goes through.  The authors recommend 64 iterations
for high security, but they believe 32 iterations should
be secure for several decades, with as few as 16
iterations being sufficient for applications with lower
security needs.

The most notable feature of XTEA is the smallness of
the encryption decryption algorithm. Below is the code
and flow chart (next page) for the encryption cycle.

x1 += ((x2<<4 ^ x2>>5) + x2) ^ (sum + *(key+(sum&0x03)));
sum+=DELTA;
x2 += ((x1<<4 ^ x1>>5) + x1) ^ (sum + *(key+(sum>>11&0x03)));

EXAMPLE 7: XTEA ENCRYPTION EXAMPLE

The decoding process is equally as simple.  The following C-code describes the reverse operation.

       x2 -= ((x1<<4 ^ x1>>5) + x1) ^ (sum + *(key+(sum>>11&0x03)));
sum-=DELTA;

x1 -= ((x2<<4 ^ x2>>5) + x2) ^ (sum + *(key+(sum&0x03)));

Plain text: [It was t][he best ][of times][, it was][ the wor][st of ti][mes, ...]

Key: [Charles Dickens.]

Plain hex: [0x4974207761732074](1,2)…

Cipher hex:  [0x7C0BA7CED6E78034]…

Note 1: Only first block results shown.

2: In between each block, the key must be reset. Otherwise, the decryption flow chart must be changed.
 2005 Microchip Technology Inc. DS00953A-page 15
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FIGURE 3: XTEA FLOWCHART
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Overview of Routines

XTEAEncode

This function encrypts the input data with the input key.

Syntax

void XTEAEncode(unsigned long* data, unsigned char dataLength)

Parameters

data – block of data to encrypt, 
dataLength – the amount of the data to encrypt (must be a factor of 2)

Return Values

None

Pre-condition

data and key preloaded with the correct values

Side Effects

Values in data have changed to the encrypted version

Remarks

Note that the assembly version only encrypts 8 bytes at a time

Example: Usage of Encode

C
...
XTEAEncode(data,sizeof(data));

Assembly
...
mov1w 0x08
movwf dataLength
mov1w 0x34
movwf key+0
mov1w 0x12
movwf key+1
...
lfsr pointerNum,data
call XTEAEncode
 2005 Microchip Technology Inc. DS00953A-page 17
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TEADecode

This function decrypts the input data with the input decryption key.

Syntax

void XTEADecode(unsigned long* data, unsigned char dataLength)

Parameters

data – block of data to decrypt,
dataLength – the amount of the data to decrypt (must be a factor of 2)

Return Values

None

Pre-condition

Data and key preloaded with the correct values

Side Effects

Values in data have changed to the decrypted version

Remarks

Note that the assembly version only decrypts 8 bytes at a time

Example: Usage of Decode

C
...
XTEADecode(data,sizeof(data));

Assembly
...
mov1w 0x08
movwf dataLength
mov1w 0x34
movwf key+0
mov1w 0x12
movwf key+1
...
1fsr pointerNum,data
call XTEADecode
DS00953A-page 18  2005 Microchip Technology Inc.
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SKIPJACK

Overview/History/Background

SKIPJACK is an encryption algorithm that was
developed in the early 1980s by the NSA for encrypting
governmental documents. It remained classified
SECRET until 1998 when it was declassified to the
public. SKIPJACK uses an 80-bit key on a 64-bit block
of data. The smaller key size of SKIPJACK has left it
vulnerable to becoming obsolete must faster than AES,
XTEA or any of the other encryption standards that
support key sizes of 128 and larger.

Encryption

Like many other encryption algorithms, SKIPJACK is
based on a Feistel network structure. SKIPJACK
alternates between 2 rules over a Feistel network with
a substitution table. The counter counts from 1 to 32
and is used to determine the round key by using the
counter as an index into the crypto-variable.

FIGURE 4A: SKIPJACK® ENCRYPTION FLOWCHARTS – PAGE 1:

ENCRYPTION

Counter = 1

Did rule A 8 times?

Rule A

True

False

Did rule B 8 times?

Rule B

True

False

Did rule A 8 times?

Rule A

True

False

Did rule B 8 times?

Rule B

True

False

Counter + 1

Counter + 1

Counter + 1

Counter + 1

END
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FIGURE 4B: SKIPJACK® ENCRYPTION FLOWCHARTS – PAGE 2

Counter

W1 W2 W3 W4G

Rule A

 

Counter

W2W1 W3 W4G

Rule B

Note 1. (G) stands for G-permutation later described in this document.

    W1,2,3 and 4 are the four words that are being encrypted.

    2. ⊕  Stands for the XOR operation.
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F-TABLE

The F-Table is a simple substitution table that is used
both in the encryption and decryption cycles of
SKIPJACK. (Note: All values are in hexadecimal)

TABLE 6: F-TABLE

y

00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

x

00 A3 d7 09 83 f8 48 f6 f4 b3 21 15 78 99 b1 af f9

01 E7 2d 4d 8a ce 4c ca 2e 52 95 d9 1e 4e 38 44 28

02 0a Df 02 a0 17 f1 60 68 12 b7 7a c3 e9 fa 3d 53

03 96 84 6b ba f2 63 9a 19 7c ae e5 f5 f7 16 6a a2

04 39 b6 7b 0f c1 93 81 1b ee b4 1a ea d0 91 2f b8

05 55 b9 da 85 3f 41 bf e0 5a 58 80 5f 66 0b d8 90

06 35 d5 c0 a7 33 06 65 69 45 00 94 56 6d 98 9b 76

07 97 Fc b2 c2 b0 fe db 20 e1 eb d6 e4 dd 47 4a 1d

08 42 Ed 9e 6e 49 3c cd 43 27 d2 07 d4 de c7 67 18

09 89 Cb 30 1f 8d c6 8f aa c8 74 dc c9 5d 5c 31 a4

0A 70 88 61 2c 9f 0d 2b 87 50 82 54 64 26 7d 03 40

0B 34 4b 1c 73 d1 c4 fd 3b cc fb 7f ab e6 3e 5b a5

0C Ad 04 23 9c 14 51 22 f0 29 79 71 7e ff 8c 0e e2

0D 0c Ef bc 72 75 6f 37 a1 ec d3 8e 62 8b 86 10 e8

0E 08 77 11 be 92 4f 24 c5 32 36 9d cf f3 a6 bb ac

0F 5e 6c a9 13 57 25 b5 e3 bd a8 3a 01 05 59 2a 46
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G-PERMUTATION

The G-permutation operation is the Feistel network in
SKIPJACK. It splits the upper and lower byte of the
input word to encrypt. The network also makes use of
the crypto-variable, which is an 80-bit long key. The
crypto-variable is indexed with the number of iterations
through the Feistel network. This number is consid-
ered to be mod 10 (so that the index wraps). The
resulting byte is then XORed into the data and used to
look up into the F-Table. The flow graph below illus-
trates this process.  Note that (F) stands for a loop up
into the F-Table.  Also note that K = counter – 1.

FIGURE 5: G-PERMUTATION (k)

G1 (high byte) G2 (low byte)

G5 (high byte) G6 (low byte)

F
CryptoVariable [((4k) + 1) mod 10]

CryptoVariable [((4k) + 3) mod 10]

CryptoVariable [((4k) + 2) mod 10]

CryptoVariable [(4k) mod 10]

F

F

F

Note: ⊕  represents the XOR operation.
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DECRYPTION

Decrypt Flowchart

The decryption flowchart is nearly identical to the
encryption flow chart. The only differences being the
counter starts at 32 and rule B starts before rule A.

FIGURE 6: DECRYPTION FLOWCHART

DECRYPTION

Counter = 32

Did rule B 8 times?

Rule B

True

False

Did rule A 8 times?

Rule A

True

False

Did rule B 8 times?

Rule B

True

False

Did rule A 8 times?

Rule A

True

False

Counter - 1

Counter - 1

Counter - 1

Counter - 1

END
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INVERSE G-PERMUTATION

The inverse G-permutation is very similar to the 
G-permutation. Note that (F) stands for a loop up into
the F-Table.  Also note that K = counter – 1.

FIGURE 7: INVERSE G-PERMUTATION (k)

G5 (high Byte) G6 (low byte)

G1 (high byte) G2 (low byte)

F

F

F

F

CryptoVariable [((4k) + 2) mod 10]

CryptoVariable [(4k) mod 10]

CryptoVariable [((4k) +1) mod 10]

CryptoVariable [((4k) +3) mod 10]
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Overview of Routines

SKIPJACKEncode

This function encrypts the input data with the cryptovariable key.

Syntax

void Encode(unsigned int* data, unsigned char dataLength)

Parameters

data – block of data to encrypt,
dataLength – the amount of the data to encrypt (must be a factor of 4)

Return Values

None

Pre-condition

data preloaded with the correct values and a factor of 4 in size

Side Effects

Values in data have changed to the encrypted version

Remarks

None

Example: Usage of Encode

...
SKIPJACKEncode(data,sizeof(data));
...
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SKIPJACKDecode

This function decrypts the input data.

Syntax

void Decode(unsigned int* data, unsigned char dataLength)

Parameters

data – block of data to decrypt,
dataLength – the amount of the data to decrypt (must be a factor of 4)

Return Values

None

Pre-condition

Data preloaded with the correct values and a factor of 4 in size

Side Effects

Values in data have changed to the decrypted version

Remarks

None

Example: Usage of Decode

...
SKIPJACKDecode(data,sizeof(data));
...
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PRBS XOR

Overview/History/Background

Pseudo-Random Binary Sequence (PRBS) generators
can be used to create a sequence of bits that have very
good randomness properties, though the sequences
they generate are predictable and eventually repeated.
Linear Feedback Shift Registers (LFSRs) can be used
to create a PRBS. Specifically, this implementation
uses the Galois implementation of LFSR to create the
PRBS. The order of the sequence is controlled by
where the feedback effects the nodes.  PRBSs are
used for very simple encryption. While this technique is
not secure, it can be used as a fast and simple way to
conceal data and deter attacks. This method may not
be very secure when the data to encrypt is plain text (as
there may be up to 3 consecutive bytes that do not get
altered, leaving partial messages visible). The
Berlekamp-Massey algorithm can be used to take an
output cycle from a LFSR and compute the feedback
tabs.  From the feedback taps and the data, the key can
then be calculated. 

FIGURE 8: PRBS FLOWCHART

The above LFSR is maximal with taps at 8,7,6 and 1.
The tap at 8 is the output of the binary sequence. The
output of the system always wraps around to the input
of the system, as well as all of the other taps. The out-
put of this sequence has good randomness properties.
If you think of a binary sequence as a series of coin
tosses, you would expect that you would land on heads
(1) half of the time and tails (0) the other half. The

probability of getting two heads in a row (11) would be
(1/2)*(1/2)=1/4. The output binary sequences of LFSRs
follow this pattern. The likelyhood of getting a run of
length 1 (‘010’ or ‘101’) is 1/2. The probablity of getting
a run of length 2 (‘0110’ or ‘1001’) is 1/4 and so on. This
is just one of many randomness properties that LFSRs
fulfill. 

EXAMPLE 8: PRBS XOR EXAMPLES

D D DD DD DD

[8,7,6,1]

Note: ⊕  stands for the XOR operation.

Plain text: It was the best of times, it was the worst of times, ...

Key: [Char]

Plain hex: [0x4974207761732074](1)…

Cipher hex: [0x3BCD7351F2B5C30A]…

Key: [Char]

Feedback: 0b10000000000000000001000000001111

Plain hex: [0x4974207761732074](1)…

Cipher hex: [0x3BCD73517275A33A]…

Note 1: Only first block results shown.
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SUGGESTIONS FOR IMPROVEMENT/VARIATION

Though LFSRs are succeptable to brute force attack due to the simplicity of their nature, there are improvements to the
feedback system that can make them more difficult to crack.

• Run through two separate times with different keys and different feedbacks

• Change the module so that the data is operated on in a different (preferably non-linear) manner
- Replace data ^= key[0]; with data ^= (key[3]&0b00110011) + (key[2]&0b10101010)
- Or Replace with data ^= swapf(key[1]) ^ (key[2]&0b11000010)

- Or other combinations
• Additional taps for the 32 bit feedback system can be found at http://www.newwaveinstruments.com/resources/

articles/m_sequence_linear_feedback_shift_register_lfsr/32stages.txt 
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Overview of Routines

PRBSEncodeDecode

This function encrypts and decrypts data using a PRBS generator.

Syntax

void EncodeDecode(unsigned char* data, unsigned int dataLength)

Parameters

data – block of data to decrypt,
dataLength – the amount of the data to decrypt 

Return Values

None

Pre-condition

key preloaded with the correct value

Side Effects

Values in data have changed to the decrypted version

Remarks

None

Example: Usage of Decode

C
...
PRBSEncodeDecode(data,sizeof(data));

Assembly
...
lfsr pointerNum.data
mov1w 0x08
movwf dataLength
call PRBSEncodeDecode
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PRECAUTIONS

With the exception of the pseudo-random number
generator XOR encryption, a single bit error in the
encrypted data can cause the destruction of the entire
block of data once decrypted. Because of this
phenomenon, extra caution should be taken to ensure
that the data is correct.  A checksum or verification byte
embedded into the data can help ensure that the infor-
mation in the data block remains intact after decryption.
This feature can also be used to help prevent key theft.
AES, SKIPJACK and XTEA are all relatively secure
algorithms, as long as the encryption key remains hid-
den (even if the encryption algorithm is known). If the
key becomes public knowledge, however, then the data
is vulnerable. If errors are intentionally introduced into
the encrypted data and the attackers are unaware of its
existence, then knowing the encryption algorithm and
the key will still not allow them to decrypt the data.

* i.e. - block[2] ^= block[3]; or  block[6] ^= 0x34;

EXAMPLE 9:
Plain text: 0x0102030405060708090A0B0C0D0E0F

Cipher Text: 0x0A940BB5416EF045F1C39458C653EA5A

Added bit errors: 0x0A940BB5416EF045F1C39458C653EA5B  (Least significant byte XORed with 0x01)

Plain Text results: 0xF0FDF04AD3AFED45BB676E5B3B1685CD (without correcting the bit error)

Note: A single bit error in this example caused the destruction of the entire block of data.
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RESULTS

TABLE 7: TIMING

TABLE 8: USAGE

C

Method
Iterations/
Variables 

Tested
Security

Encoding 
Cycles per 

Byte (approx.)

Decoding 
Cycles per 

Byte (approx.)

Inst./Sec 
Bytes/Sec 
(Encode)

Bytes/Sec 
(Decode)

PRBS XOR encryption 
with skipping key

KeyJump = 1 Low 92-146 (**,*) 92-146 (**,*) 68493 68493

SkipJack® High 2812 2817 3556 2550

XTEA (also referred to 
as TEAN or TEA-N)

16 iterations High 1075 (*,***) 1280 (*,***) 9302 7813

XTEA (also referred to 
as TEAN or TEA-N)

32 iterations High/
Very High

2133 (*,***) 2194 (*,***) 4688 4558

AES (Rijndael Algorithm) High/
Very High

2153 2940 (****) 4645 3401

Assembly

PRBS XOR encryption 
with skipping key

KeyJump = 1 Low 22-40 (*,**) 22-40 (*,**) 250000 250000

PRBS XOR encryption 
with skipping key

KeyJump = 5 Low 97-120 (*,**) 97-120 (*,**) 83333 83333

XTEA (also referred to 
as TEAN or TEA-N)

16 iterations High 464 (*,***) 464 (*,***) 21552 21552

XTEA (also referred to 
as TEAN or TEA-N)

32 iterations High/
Very High

926 (*,***) 926 (*,***) 10799 10799

AES 
(Rijndael Algorithm)

High/
Very High

367 620-687 (****) 27248 14556

*  Depends on size of the data array.
**  Depends on value of the key used.
***  Depends on iterations/jumps.
****  Depends if decode key is generated or hard-coded.

C

Method ROM RAM

PRBS XOR encryption with skipping key 226 12*

SkipJack® 3616 34*

XTEA (also referred to as TEAN or TEA-N) 1950 38*

AES (Rijndael Algorithm) 6104 33*

Assembly

PRBS XOR encryption with skipping key 48 11

XTEA (also referred to as TEAN or TEA-N) 962 25

AES (Rijndael Algorithm) 4400 45

* This figure does not include the memory holding the 
data to be encrypted.
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Summary

Like many other applications, when choosing an
encryption algorithm for an application, it becomes a
balancing act between execution speed, code size and
security. If the application emphasizes speed over
security, then the PRBS algorithm is probably the best
choice. If absolute security is needed no matter what
the speed, cost or code size, then the best choices are
XTEA with 32 or more rounds or AES. A balance
between code size, execution speed and security is
XTEA with 16 iterations. When developing a system
that needs to securely talk to other systems, it will be
necessary to implement the same encryption standard
so the communication can be deciphered. AES is
probably the most common implementation of the four
discussed in this application note. When developing
products that will remain in use for several decades, it
is also important to remember that as technology and
cryptography methods improve, the encryption algo-
rithms implemented today will become weaker with
time.  Brute force attacks will become faster and meth-
ods of getting better then brute force attacks are con-
stantly being developed.  A more secure encryption
implementation may be appropriate for applications
where the firmware will remain in the field without
updating its encryption alogorithm, but will remain in
the field for long periods of time to help keep the data
secure as long as possible.
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Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
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WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
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Microchip disclaims all liability arising from this information and
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implicitly or otherwise, under any Microchip intellectual property
rights.
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