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Abstract 

This paper presents a novel minimum cost architecture 

for the Advanced Encryption Standard (AES) algorithm. 

This architecture uses a bit-serial approach, and it is 

suitable for VLSI implementations. By utilizing a true bit-

serial design, this architecture can be used for cost 
sensitive applications that require high security, such as 

security system human interfaces, point of sale terminals, 

and infotainment kiosks. This AES architecture can be 

used as a coprocessor integrated with an inexpensive 

microcontroller in a system-on-a-chip (SoC) platform. 

The prototyping of the architecture is presented as well. 

1. Introduction 

The need for privacy has become a high priority for 

both governments and civilians desiring protection from 

signal and data interception. Widespread use of personal 

communications devices has only increased demand for a 

level of security on previously insecure communications. 

Both DES (Data Encryption Standard) and AES are 

defined as symmetric key block ciphers, with the main 

difference being the bit length of the key (56 bit for DES). 

These symmetric-key encryption schemes use the same 

key for both the sender and receiver, and as a result 

eliminate the need for the verification server needed in 

public keying. Symmetric keying lends itself to work 

independently of an open network and in turn a higher 

level of system interoperability. 

Ever since DES was phased out in 2001 and its 

successor, the Advanced Encryption Standard (also 

known as Rijndael) took its place, various AES 

implementations have been proposed both in software and 

hardware. This paper presents a low cost and low power 

hardware architecture for the Advanced Encryption 

Standard (AES). In 1997, the National Institute of 

Standards and Technology promoted worldwide research 

into a replacement for DES, or the widely accepted Data 

Encryption Standard. In this brief, we present an efficient 

and cost-effective AES co-processor design. To minimize 

cost, focusing on efficiency reduced overall hardware 

complexity. By incorporating most of the algorithm 

complexity into the controller, components are reused and 

efficiency increased. A Verilog® hardware 

implementation is also presented, utilizing a field 

programmable gate array (FPGA) as a prototyping 

platform. Thus, the design can be easily migrated to an 

ASIC implementation in an SoC. In this architecture, the 

main priority was not to increase throughput or decrease 

processing time but to balance these factors in order to 

minimize cost. A focus on low power and cost allows for 

scaling of the architecture towards vulnerable portable 

communications devices in consumer and military 

applications such as cellular phones, PDAs, digital radios, 

pagers, and similar lower speed communication 

embedded systems. 

2. Recent related work 

Recent AES implementations have focused on speed 

gains obtained by manipulations in the SubBytes and 

MixColumns, two of the more time-consuming functions 

in the algorithm. One such software technique, called the 

T-Box algorithm, merges SubBytes and MixColumns in 

encryption and Inverse SubBytes and Inverse 

MixColumns in decryption [1]. Another widespread 

technique used was a BDD architecture and two-level 

logic to simplify the S-Box. The use of such techniques 

increases throughput to above 10-Gbps. However, such 

implementations are fabricated using 0.13 µm technology 

with clock rates approaching 900 MHz. Even in 0.18 µm 

CMOS, only 1.6 Gbps is achieved [2]. It is clear that out 

of all the functions, manipulating SubBytes is the key to 

increasing performance. Although, custom 

implementations of modifications to the SubBytes and 

Mix Columns functions will often result in increased 

sensitivity to noise and operating temperature. As well as 

extremely large fan-outs, adding higher propagation 

delays. 

There has been little to no research done regarding 

lowering power requirements and cost by deemphasizing 

processing speed. Relatively high throughput (2.381 
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Gbps) for 128-bit key mode was achieved in one FPGA 

implementation with a cost of only 58.5K gates [3]. This 

was done by introducing a 4-stage pipeline for the main 

functions and performing a basis transformation on 

SubBytes. The alternative S-Box design would be to use a 

lookup table (LUT). 

3. AES algorithm specification 

The AES encryption process [4] for a 128-bit plain text 

block is shown in Figure 1. The AES algorithm specifies 

128-bit, 192-bit, and 256-bit modes. Each bit mode has a 

corresponding number of rounds (Nr) based on the key 

length (Nk words). Nb (state block size) is constant for all 

bit modes. This 128-bit block is termed the state. Each 

state is comprised of 4 words. A word is subsequently 

defined as 4 bytes. Table 1 shows the possible key/state 

block/round combinations. 
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Figure 1.  AES encryption algorithm

Table 1. AES bit mode specifications 

Bit Mode Key 

Length 

(Nk 

words) 

State Size 

(Nb 

words) 

Number of 

Rounds 

(Nr)

128 4 4 10 

192 6 4 12 

256 8 4 14 

The encrypt/decrypt process involves a sequence of 

four primitive functions: SubBytes, ShiftRows, 

MixColumns, and AddRoundKey. AddRoundKey is the 

same for both encrypt and decrypt. The three other 

functions have inverses used in the decrypt process: 

Inverse SubBytes, Inverse ShiftRows, and Inverse 

MixColumns.  

Either encryption or decryption begins with the round 

key expansion created by the key schedule function. 

Using the RCON values in combination with a series of 

XOR, SubBytes, and RotWord (rotate word) operations 

an expanded round key is generated with a size of 

( ) Nb1Nr ×+  bytes. For the 256-bit key expansion, the 

SubBytes operation is reapplied 4 words after each use of 

the RCON. 

The primitive functions are called Nr times in a loop 

(called a round). Nr is initialized to 10, 12 or 14 as a 

function of key length. SubBytes is a nonlinear 

transformation in which one byte is substituted for 

another by means of an affine transformation over the 

Galois Field ( )2GF , as seen in Equation 1. 
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ShiftRows is a shift operation performed on the last 

three rows of the state. The last three rows are rotated to 

the left by: 1, 2, or 3 bytes shown more specifically in 

Figure 1. MixColumns is finite field matrix multiplication 

applied every round except the last. Each column is 

multiplied as a four-term polynomial in 

( ) ( )1xmod2GF 48 +  using the array shown in 

Equation 2. 
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AddRoundKey performs a bitwise XOR operation with 

the current state and the round (expanded) key every 

round including an initial round and the last round. The 

round key is read from round 0 to Nr for encrypt and vice 
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verse for decrypt. During regeneration of the round key, 

the decrypt process must halt and wait for generation of 

the last round key causing a significant delay in 

initialization.  

The decryption process calls the inverse of each 

function. Inverse SubBytes involves taking an inverse 

affine transformation. Inverse ShiftRows rotates the bytes 

to the right by: 3, 2, or 1 byte(s). Inverse MixColumns 

uses the same operations as MixColumns but uses the 

inverse matrix shown in Equation 3. 
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4. Architecture and hardware design 

Before designing the architecture, a preliminary 

software implementation was developed in order to better 

understand the algorithm, develop test benches, and 

anticipate any obstacles in the transition to hardware. The 

software implementation was written in C, due to its ease 

of use and similarity to Verilog. A C++ I/O was utilized 

because of ease of use and interoperability.  

The AES algorithm specification FIPS-197 [4] was 

followed as closely as possible, while minimizing 

redundancy. Processes shared between the encryption and 

decryption processes were reused as often as possible. 

From this software design, it was observed that the 

MixColumns and SubBytes functions took up significant 

CPU time. These functions require GF operations that are 

difficult to negotiate in software. MixColumns 

specifically required sequential left shifts, each followed 

by a conditional XOR operation. The condition of the 

XOR operation depends on there being a 1 in the most 

significant bit of the current byte before it is shifted. If the 

condition is true, the shifted byte is XOR-ed with byte 

{1b}, the irreducible GF polynomial is shown in Equation 

4 below [4]. 

( ) 1xxxxxm 348 ++++=  (4) 

The affine transformation used by SubBytes can be 

implemented as a 16x16 lookup table. Every time 

SubBytes/Inverse SubBytes is called; the table is parsed 

for the appropriate byte substitution. 
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Figure 2.  Overall hardware design
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There is no simple way to getting around the use of a 

lookup table, as research into other implementations has 

shown. An attempt at splitting the search process into 

sixteen smaller comparisons did not significantly increase 

efficiency. The LUT used a great deal of memory in 

software, and similarly a large number of gates in the 

hardware design. 

Various methods for reducing GF circuit size exist, 

such as composite (or tower field inversion), Fermat’s 

little theorem or extended Euclidean algorithms [2]. 

However, these methods introduce large propagation 

delays and increased power consumption. The low-cost 

and low-power approach minimizes the complexity of GF 

operations by sacrificing speed.  

The basis for the hardware implementation is a result 

of the work done on the C++ reference code. Using the 

code, the design intent was to develop a loosely coupled 

AES co-processor which operates independently of the 

main processor. The resulting data-path design is shown 

in Figure 2. 

The main components of the datapath are the State RF 

(Register File), Key RF, RoundKey RF, XOR gate, S-Box, 

Inv S-Box, Working Register, and MixColumns 

accumulator. Data and instructions are fed into the 

module by an 8-bit line and assigned to an 8-bit shift 

register (see Figure 3) by a 5-bit address line. The data is 

output serially upon completion of the state operations. 

The Controller generates control signals for data 

transportation, key expansion, encryption and decryption. 
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Figure 3.  8-bit shift register

Assuming the data and key are first loaded by the main 

processor into the register files, the key expansion process 

can begin. The Key RF and RoundKey RF will receive 

addresses from the controller allowing individual bytes to 

be chosen for manipulation. Once the round key is 

generated, the values are held constant until the main 

processor assigns a new key. The State RF contains the 

current state values and changes after each function call. 

The Key RF is designed to hold the first 16, 24 or 32 

bytes of the round key as shown in Figure 4. Similarly, 

the RoundKey RF is simply a 208 byte extension of the 

Key RF design. The State RF is broken down into 4 sets 

of 4 8-bit shift registers (a single set is shown in Figure 5). 

Each set constitutes a row, and using a pair of control 

wires, both the ShiftRows and Inverse ShiftRows 

operation can be performed internally. The data in the 

State RF is physically moved from one shift register to the 

next until the each byte reaches its respective register 

during either ShiftRows operation. 
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Figure 4.  Key register file
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Figure 5.  Row shifter in state register file

The S-Box LUT receives an 8-bit input through a 

multiplexer from either one of the three register files and 

processes the byte by combinational logic. The Inverse S-

Box only receives a connection from the State RF. The S-

Box output is tied to the State RF, RoundKey RF, and 

Working Register; while the Inv S-box ties back to the 

State RF. 

The modules are connected serially to the XOR gate. 

An 8-bit temporary register (Working Register) is placed 

at the gate’s output to assist in byte operations during the 

key expansion and MixColumns. The Working Register 

operates in tandem with the MixCols Accumulator to 

compute both MixColumns functions. In addition, the 

byte values {1b} and {00} are held constant at the input 

of the XOR gate to be used as needed. 

The controller reads flags from the ModFlag block and 

instruction register (IR). The ModFlag block signals the 

controller as to the status of the most significant bit in the 

current output byte for use in the conditional XOR. The 

IR contains the command the co-processor will respond to. 

5. Discussion and conclusions 

This architecture is being developed and prototyped in 

an FPGA platform using the Verilog® Hardware 

Description Language (HDL) and the Spartan II XC2S50 
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FPGA from Xilinx. This FPGA platform has 50K 

available gates, 1,728 logic cells, 32 Kb RAM, and 64 I/O 

ports; which are suitable for the design. 

The critical paths in the hardware implementation have 

shown to be SubBytes, MixColumns, and the decrypt key 

schedule. The hardware testing phase will reveal the 

actual delays in algorithm processing. Several design 

modifications are to be evaluated: modified SubBytes 

design, and a reduced MixColumns algorithm. By 

focusing on minimization of redundancies within these 

functions, cost can be reduced while maintaining a 

reasonable operating speed. 

The SubBytes and MixColumns algorithms can also be 

merged as other implementations have done. With an 

advanced chip process, the architecture would perform 

much faster, and the design can be scaled accordingly. 

Some aspects of the design can also be parallelized 

selectively, but will not necessarily reach the levels of 

other implementations; however, the chief objective of 

this research was to develop an architecture to minimize 

the cost of the implementation (i.e. gate count). 

Table 2.  Comparison of some AES architectures 

 [5] [6] [3] THIS 

Technology 0.35 

µm 

0.18

µm 

0.35

µm 

FPGA 

Maximum 

Clock Rate 

N/A 125 

MHz

200

MHz

510

MHz

Throughput 

(Gb/S) 

1.95 1.14 2.00 0.37 

Gate Count 612K 173K 59K 10K 

Throughput/ 

Gate Count 

(Kb/S/Gate) 

3.18 6.59 34.98 36.13 

Table 2 shows comparisons of size and speed, among 

other attributes, of this implementation with others. As 

Table 2 demonstrates, this implementation uses only a 

small fraction of the gates used by other designs that have 

been reported in the literature, while maintaining an 

acceptable level of throughput. This is evident from the 

high efficiency of this design, which is given by the 

Throughput/Gates figure of merit. 

By using a true low level bit-serial approach, a 

minimum cost AES co-processor architecture has been 

achieved. This architecture can be used in many military, 

industrial, and commercial applications that require 

compactness and low cost. 
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